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� This review addresses the important
bioactive ingredients recovered from
different major crustacean’s by-
products.

� A comprehensive application of
crustacean’s by-products in various
fields is presented.

� Nowadays, many newly developed
techniques have been applied in
crustacean’s by-products recovery.

� A combination of innovative
extraction techniques with
industrially applicable technologies
can efficiently recover these valuable
components.
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Background: The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with
inevitable by-products, high waste disposal costs, environmental and human health issues, loss of mul-
tiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these biore-
sources are underutilized owing to the lack of effective and standardized technologies to convert these
materials into valued industrial forms.
Aim of review: This review aims to provide a holistic overview of the various bioactive ingredients and
applications within major crustaceans by-products. This review aims to compare various extraction
methods in crustaceans by-products, which will aid identify a more workable platform to minimize
waste disposal and maximize its value for best valorization practices.
Key scientific concepts of review: The fully integrated applications (agriculture, food, cosmetics, pharma-
ceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The
pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (en-
zymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent
(ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of
corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable biopro-
cess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level.
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One feasible way for best valorization practices is to combine innovative extraction techniques with
industrially applicable technologies to efficiently recover these valuable components.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Crustaceans are segmented invertebrates and mainly encom-
pass shrimps, crabs and lobsters, which are harvested for food
and then processed at a large scale for export being favored sea
food dishes worldwide [1]. According to FAO 2020 statistics, the
global aquaculture production of crustaceans exceeded 9.3 billion
tons annually, accounting for ca. $69.3 billion, with shrimps pro-
duction ranking first, followed by lobsters and crabs [2]. The
unavoidable growth of the world’s population, along with the
growing consumer demand, will lead to a dramatic increase in glo-
bal crustacean waste (mainly cephalothoraxes, shells and
exoskeletons) in the coming decades, which makes up to 50% to
70% of the original weight [3]. An estimated 6 to 8 million tons
of crustacean waste are generated annually across the globe [4].
After processing, ca. 45% to 60% of whole shrimp become by-
products; the percentage varies depending on the species, area,
and processing techniques [5]. In addition, lobster processing glob-
ally generates more than 50,000 tons of by-products, with disposal
costs estimated at $7.5 million annually for the industry as a whole
[6]. The same is true for the by-products generated during crab
processing [7]. Currently, residues disposed of as municipal solid
waste end up in landfill or in the sea; dumping costs can be as high
as $150/ton, compared to the market price of $100–120/ton for this
waste [8]. Therefore, the unscientific disposal of crustaceans’ by-
products (CBPs) can cause huge disposal costs, lead to serious pol-
lution of the marine environment, create risks to human health [9].
More importantly, these CBPs encompass a plethora of precious
bioactive ingredients with huge market potential [10]. The residual
biomaterials from CBPs discarded in aquatic products processing
encompass about 20%–40% of protein, 20%–50% of mineral salts
(mainly CaCO3), 15%–40% chitin, together with several minor com-
ponents including lipids, pigments (such as astaxanthin) and other
minerals, depending on the origin, season, species, age, among
other factors (Fig. 1) [6,10].

Notably, extraction of the biomaterials from CBPs and using
them directly or after additional processing may be a strategy to
reduce waste and create valuable compounds with exceptional
biological properties that might be used in a variety of fields
(Fig. 2) [11,12]. In addition to producing large economic benefits,
the effective use of CBPs would also aid to solve waste manage-
ment issues related to the crustacean industry. Traditionally, CBPs
are used to produce bioactive ingredients with the aid of extensive
chemical methods [13–15]. These methods are against the current
Fig. 1. Main active ingredients from th
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green chemistry trend that aims to avoid unnecessary creation of
hazardous effluent, which is problematic from both economic
and environmental standpoints. Therefore, to efficiently valorize
CBPs into high value-added products, appropriate methods with
minimum environmental impact is urgently needed as an alterna-
tive for chemical methods [16]. Recently, within the blue biotech
era, several biotechnological and novel extraction methods have
been used, such as enzymatic hydrolysis and fermentation
[17,18], microwave-assisted [19], ultrasound-assisted [20,21],
ionic liquid extraction [22] and natural deep eutectic solvent
[23]. These biotechnological methods will help the sustainability
requirement and are anticipated to become the standard in the
future.

Despite the fact that there are numerous studies on active
ingredients, extraction, and applications of marine by-products
[12,24], the extraction and application of the active ingredients
of the three primary CBPs, shrimp, crab, and lobster, are rarely doc-
umented and compared in a single study. Besides, the amount of
CBPs used for large-scale production is still rather limited in com-
parison to the tons produced, mainly due to the fact that there are
few effective and standardized methods for converting these
resources into a marketable form. Therefore, this study provides
the first holistic comparative overview of the bioactive compo-
nents, their currently available extraction methods, industrial
applications of the three main CBP sources, and provides proposals
for future large-scale production of their active ingredients. We
thoroughly searched PubMed and Web of Science (from 2010 to
June 2023) for published research. These key terms were used
(‘‘Crustacean” AND ‘‘Shrimp” AND ‘‘Lobster” AND ‘‘Crab” AND
‘‘by-products” AND ‘‘Chitin” AND ‘‘Protien hydrolysates” AND
‘‘Lipids” AND ‘‘Astaxanthin”). Finally, we mentioned 200 papers
in our exhaustive review based on the titles and abstracts of the
search results.

Chitin and its derivatives (chitosan and chitooligosaccharides)

The basic properties of chitin and its derivatives

Chitin (C8H13O5N)n, the world’s second largest polymer after
cellulose, is a copolymer comprised of N-acetyl-D-glucosamine
units joined by b-(1–4) glycosidic bonds (Fig. 3A) [25]. Chitin is a
rigid, inelastic, white or yellow nitrogenous polysaccharide that
is generated at a pace of about 100 billion tons annually [26]. Three
polymorphic forms of chitin are found in nature: a-chitin (anti-
ree main crustaceanś by-products.



Fig. 2. The comprehensive applications of crustaceanś by-products in various fields.

Fig. 3. The chemical structure of chitin, chitosan and chitooligosaccharides (A) and schematic diagram of chitin’s crysalline structure (B).
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parallel arrangements), b-chitin (parallel arrangements), and c-
chitin (mix a of and b arrangements) (Fig. 3B) [27], with a-chitin
being the most prevalent form and responsible for the polymer’s
rigidity in crustacean shells [28]. Due to the potent intermolecular
hydrogen bonding, chitin is extremely hydrophobic and insoluble
in water as well as the majority of organic solvents, while a few
solvents are capable of dissolving it [29]. Crustacean shells are a
natural source of commercial chitin, with various sources yielding
different levels of chitin from shrimp (14%–30%), lobster (16%–
23%), crab (14%–28%), depending on species, organism, nutrition
status, processing methods and other factors [1,10].

Chitosan (C6H11O5N)n, the only naturally occurring cationic
polysaccharide, is a well-known N-deacetylated derivative pro-
duced by partial chemical or enzymatic chitin deacetylation
(Fig. 3A) [30]. Therefore, chitosan encompasses copolymers of
repeating units of D-glucosamine (GlcN, deacetylated units) and
N-acetyl-D-glucosamine (GlcNAc, acetylated units). Additionally,
the GlcN/GlcNAc ratio serves as a broad indicator to distinguish
chitin from chitosan. In order to be classified as ’chitosan’, chitin
must be at least 50% deacetylated and therefore contain at least
50% GlcN, which affects the chemical properties of chitosan
(e.g. solubility, viscosity, flexibility, tensile strength). Chitosan is
4

insoluble at neutral and basic pH levels but soluble in aqueous acid
(pH between 2 and 6) [31]. In addition, the amino and hydroxyl
groups of chitosan affect its biological properties (e.g. non-
toxicity, bioavailability, biocompatibility, biodegradability, hemo-
compatibility, mucoadhesiveness, antioxidants and adsorption
enhancers), expanding the range of chitosan applications [32,33].

Chitooligosaccharides (COS), also known as chitosan oligomers
or chitooligomers, are chitosan depolymerized products produced
by acid hydrolysis (Fig. 3A) [34]. Chitosan classified as COS has
an average molecular weight of less than 3900 Da and a degree
of polymerization of less than 20 [35]. COS is easier to work with
and more suitable for large-scale industrial applications than chi-
tosan because of its short chain length, low molecular weight,
low viscosity, and high solubility [36]. Excellent biological charac-
teristics of COS have been described, including anticancer, antitu-
mor, antibacterial, cholesterol-lowering and immuno-enhancing
activities, warranting for its inclusion in health applications [37].

Chemical extraction of chitin and its derivatives

The various crustacean shells represent major sources of chitin,
in which the compact matrices of chitin fibers are interlaced with
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proteins and strengthened by the deposition of minerals (calcium
carbonate) and carotenoids (mostly astaxanthin) [38]. Hence, cur-
rent industrial methods for chitin and its derivatives isolation rely
on chemical processes involving: (1) grinding into fine power; (2)
demineralization (DM); (3) deproteinisation (DP); (4) depigmenta-
tion; (5) deacetylation to form chitosan; (6) depolymerization to
form COS [39]. Chitin can be produced using a variety of methods,
among which chemical and biological processes are the two most
common ones.

The most common method for demineralizing shells is acid
treatment (including HCl, HCOOH, HNO3, CH3COOH, H2SO4), which
removes minerals like calcium carbonate and calcium phosphate
by heating the extraction temperature above 100 �C for a longer
period of time. HCl is the preferred solvent for extracting mineral
elements among these acids [40]. Different shell types, extraction
times, temperatures, and acid concentrations affect the demineral-
ization’s characteristics in different ways. For example, shrimp
shell is thinner, making its chitin separation efficiencies higher,
while the yield is less and the quality is lower compared with lob-
sters and crabs. Harsh acid treatment may lead to modification,
such as depolymerization and deacetylation of chitin. Mild acids,
including formic acid, acetic acid, citric acid, sulfurous acid, are
good solutions to the fore-mentioned problems, while the recov-
ered chitins resulted in high residual ash content [41].

Demineralized shells are deproteinated utilizing an alkali treat-
ment with widely available chemicals like NaOH, KOH, Na2CO3,
NaHCO3, Na2SO4, NaHSO4, Na3PO4 etc. Among these alkalis, NaOH
is the preferential solvent with its concentration ranging from
0.125 to 5.0 M, coupled with different temperatures (up to
160℃) and extraction time (from few minutes to few days) [41].
The chemical links between protein and chitin are cleaved during
deproteination. However, prolonged exposure with strong alkali
causes chitin to become depolymerized and deacetylated.

Colored chitin is produced during the demineralization and
deproteination of CBPs. The final stage in producing colorless chitin
for consumer preferences is depigmentation. To remove pigments,
including carotenoids, chemical solvents (acetone, ethanol) and
strong oxidants (H2O2, NaOCl, and KMnO4) are often used for 10
to 20 min before being dried for 2 h at ambient temperature [2].

Conventional chemical process of converting chitin to chitosan
in concentrated NaOH at preferably high temperatures is widely
used for large-scale production due to its low cost and short pro-
cessing time, although this poses significant environmental con-
cerns, low reproducibility and high energy consumption [14,42].
Glycerol can be used as a reaction solvent for the conversion of
chitin to chitosan, with the advantage of not only recycling glycerol
but also reducing the alkali concentration required for the deacety-
lation reaction, thus reducing the environmental impact of the pro-
cess [43].

Last but not least, COS is produced by by depolymerization of
chitin or chitosan with chemical acids as HCl, HNO2, H3PO4, etc.
[44]. Chitosan’s molecular weight can be reduced through the
usage of free radicals. Chitosan’s viscosity can be reduced using
H2O2 or potassium persulfate degradation [35]. Investigations into
the degradation of chitin or chitosan by lactic, formic, and trichlor-
oacetic acids were also conducted. These treatments did, however,
yield secondary compounds that are challenging to remove due to
the complexity of the reaction process.

The chemical treatment for chitin extraction is the most com-
monly used technique commercially nowadays for its short pro-
cessing time, while it holds several disadvantages: (i) negative
impact on the physico-chemical properties of chitin; (ii) environ-
mentally unfriendly; (iii) higher solvent consumption; (iv) the
extracted protein and minerals are damaged for no longer appro-
priate applications in human foods [45]. Therefore, biocatalysis
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and biotransformation using enzymes and microorganisms offer
an alternate method to extract chitin from CBPs without risking
the harsh acid and alkali damage.

Bioprocesses of chitin and its derivatives

Bioprocesses with enzymes and microorganisms can also be
used in chitin recovery including: (1) enzymatic demineralization;
(2) enzymatic or fermentation deproteinisation [46]. Other proce-
dures such as decoloration largely remain the same. A comprehen-
sive comparison between chemical extraction and bioprocess of
chitin and its derivatives is shown in Fig. 4 highlighting each
advantages and limitations.

Fermentation processing method
Microorganism-based fermentation is an intriguing new tech-

nique for chitin extraction that provides an alternative to the
harsher chemical processes. Fermentation is envisioned as one of
the most ecologically friendly, safe, adaptive technologically, and
economically feasible alternative approaches [39]. The fermenta-
tion of CBPs can be carried out by selected strains of bacteria that
produce lactic acid (LA) and protease [47]. During fermentation,
the LA produced reacts with calcium carbonate present in the chiti-
nous fraction, resulting in the formation of calcium lactate, which
can be removed after precipitation. In addition, the low pH also
inhibits the growth of spoilage microorganisms [40]. The depro-
teination of CBPs occurs mainly by extracellular proteases pro-
duced by the added LA bacteria [48,49]. The efficiency of LA
fermentation depends on many factors, mainly the differences
between microbial species, the added carbon source, the initial
pH, the temperature and the duration of fermentation [18]. A vari-
ety of microorganisms and methods suggested for CBP biofermen-
tation were summarized [2,46,50].

Non-LA bacteria, which produce proteases with high proteolytic
activity, have been reported to be used in the fermentation of CBPs
as well [51]. However, not all non-LA bacteria create enough
organic acid to dissolve calcium carbonate [48]. In some cases,
co-fermentation with acid-producing bacteria or two-step fermen-
tation has been used [49,52]. Similar to LA fermentation, many fac-
tors have been reported to influence the fermentation process, i.e.
crustacean shell concentration, added glucose concentration, incu-
bation time and inoculum size [53].

Enzymatic extraction
Enzymes are advantageous as they minimize or generate near-

zero wastes by transforming crustacean wastes into value-added
products [54]. Enzymatic hydrolysis is regarded as a mild process
that create high-yielding products without compromising nutri-
tional quality by, for example, degrading amino acids as seen in
chemical hydrolysis. Enzymatic deproteination is accomplished
with the use of proteolytic organisms or commercial proteases
such as alcalase, papain, pepsin, pancreatin, trypsin and others,
among which alcalase is the most common commercial protease
to eliminate proteins from CBPs [55]. Because commercial prote-
olytic enzymes are rather expensive, using crude extracted pro-
teases produced from bacteria and marine animal viscera for
chitin recovery has received great interest in studies during the last
few decades especially if to be applied at commercial level [56].
Numerous parameters, including enzyme: substrate ratio, temper-
ature, and incubation period, might have a considerable impact on
protein hydrolysis [57]. Although enzymatic extraction is a signif-
icantly faster and more convenient technique to extract chitin from
CBPs with high deproteination efficiency, demineralization with
organic or inorganic acid is still required to achieve highly purified
chitin.



Fig. 4. A comparison of the chemical and biological processes used to remove chitin from crustacean by-products.
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Chitin deacetylase from enzyme-producing fungi and bacteria
can be used to produce chitosan, with fungi being more difficult
and time-consuming to culture in industrial-scale fermentation
systems [58,59]. Specific chitosanases and non-specific enzymes
from bacterial, fungal, mammalian, and plant sources, such as cel-
lulases, lipases, lysozyme, hemicellulases, pectinases, and pro-
nases, can generate COS [60]. Specific chitosanases are restricted
in use due to their high price and little availability in large quanti-
ties, whereas these non-specific enzymes are less expensive, more
readily available and more efficient for industrial use.

It should be noted that the enzymatic method is less efficient
than chemical method, with ca. 5% to 10% of residual protein usu-
ally still associated with the separated chitin, which must then be
treated with additional alkali to obtain more purified chitin under
milder conditions [41]. In general, the ultimate yield and quality of
the recovered chitin are unaffected by the order of demineraliza-
tion and deproteination during chemical processing [38]. However,
if enzymatic deproteination is carried out first, minerals present in
CBPs may lessen the effectiveness of the proteases. Therefore, dem-
ineralization should therefore be done first during enzymatic
extraction.

The advantages of biological extraction include: (i) environ-
mental safety; (ii) ease of manipulation; (iii) negligible solvent
consumption; (iv) higher reproducibility in less time; (v) high-
quality solubilized minerals and proteins that can be employed
in human and animal feed. However, due to concerns with incom-
plete deproteination, lengthy incubation times, and low-quality
chitin depending on the kind of microorganism utilized in fermen-
tation, biological extraction is only suitable for laboratory scale
studies. As a result, chemical extraction of waste from crustaceans’
shells is still more practiced [61].
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Physical assisted extraction of chitin and its derivatives

To improve chitin quality and reduce manufacturing cost, phys-
ical assisted methods can be applied before, after or during the
demineralization and deproteination process as a more environ-
mentally friendly option. Common physical assisted techniques
include microwave assisted extraction (MAE) [62], ultrasound
assisted extraction (UAE) [63], and HOW-CA process [64]. A com-
parison of the advantages of the physically assisted extraction
methods is shown in Fig. 5.
Microwave assisted extraction
Among numerous extraction methods, microwave has been

found to be successful as a green, economical and sustainable
method to assist in the demineralization of chemical and enzy-
matic chitin extraction [65]. Microwave heating has been shown
to have a great potential to accelerate chemical reactions, boost
reaction yield, improve product purity and properties compared
to conventional heating [66–68]. Microwave heating is primarily
accomplished through two mechanisms: (i) dipolar polarization
and (ii) ionic conduction [69]. High yields of chitin were produced
using MAE and the lactic acid demineralization procedure with
barely any remaining minerals (0.2%) [70]. Besides, microwave
technology can break down chitin and chitosan into low molecular
weight chitosan or chito-oligomers applied in a number of fields
[71,72]. For example, the microwave-intensified lobster shell pro-
tein hydrolysate exhibits outstanding functions in terms of solubil-
ity, emulsification, foaming, water absorption, oil absorption, and
nutritional value for food applications [73]. Besides, the degree of
deacetylation and the molecular mass of the resulting chitosan



Fig. 5. A comparison of the advantages of microwave assisted extraction, ultrasound assisted extraction and HOW-CA process.

Z. Zhang, Z. Ma, L. Song et al. Journal of Advanced Research xxx (xxxx) xxx
are affected by different microwave working settings such as reac-
tion time, solvent concentration, and solid-to-liquid ratio.

Ultrasound assisted extraction
UAE is a physical extraction method that uses ultrasonic waves

to break up the material’s cells and release the target compounds
more quickly and effectively [74]. Due to depolymerization of
macromolecules, dissociation of covalent connections in polymer
chains, and dispersion of aggregates, the cavitation effect of ultra-
sound enhances the solubility of protein coupled with chitin [75].
UAE increases the efficiency of chitin extraction, reduces extraction
time and avoids the requirement for high temperatures [76]. Cur-
rently, UAE is a technology that has been successfully used to
improve the speed of many extraction procedures [63,77].

HOW-CA process
The HOW-CA technique, in which HOW stands for Hot Water

and CA refers for Carbonic Acid, is another successful and estab-
lished method for extracting chitin [78]. In order to reduce
expenses and waste production, the HOW-CA method only uses
water and CO2 as reagents, with hot water being used to denature
proteins and carbonic acid being used to dissolve minerals. At high
temperatures, proteins are partially hydrolyzed and completely
dissolved in water. Then, calcium carbonate is dissolved in an
aqueous solution while being under pressure from CO2 at room
temperature. When CO2 is released, calcium carbonate re-
precipitates, allowing for calcium carbonate recovery through fil-
tration. To reduce capital expenditures, water and CO2 can both
be recycled in a semi-batch fashion. Using method modeling,
techno-economic analysis and life cycle evaluation, the HOW-CA
approach was found to be more cost-effective, economic and eco-
logical than traditional chemical methods [64]. Furthermore, the
HOW-CA process generates high quality chitin (90%) with less
deacetylation, making it suitable for a larger scale production.

Solvent extraction of chitin and its derivatives

Ionic liquids (ILs)
ILs are gaining an increasing interest from researchers due to

their excellent thermal and chemical stability, high conductivity,
and potent solubilizing capacity for various organic or inorganic
solvents [79]. Compared to traditional organic solvents, they
increase selectivity and reduce environmental impact. ILs typically
contain particular organic cations, and organic or inorganic anions
that, under appropriate conditions can dissolve chitin without
causing the polymers to break down during extraction. Imidazoles,
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morpholines, pyrroles, quaternary ammonium salts, quaternary
phosphonium salts, and other compounds are examples of com-
mon ILs [80]. For instance, chitin was produced from the crab shell
by 1-allyl-3-methylimidazolium bromide ([AMIM][Br]), with a
yield of 12.6% and acetylation of 93% [81]. Another novel
ammonium-based ionic liquid was employed to recycle 13.4 % of
the medium molecular weight chitin found in shrimp shell waste
[82]. Although ILs have a strong solubilization capacity for chitin,
they are still controversial owing to their inherent toxicity and
non-degradability [83]. Therefore, the numerous applications of
ILs are severely constrained by their hazardous properties.
Deep eutectic solvents (DESs)
Recently, there has been increasing reports on DESs, an alterna-

tive for ILs, as a green solvent for utilization in chitin and its deriva-
tives. DESs have features comparable to ILs, however they are more
favorable owing to their biodegradability, low cost, and simple
manufacturing procedure [84]. Crustacean shell waste was sub-
jected to the choline chloride-based DESs for chitin separation
[85]. Furthermore, DES was also applied in the production of chitin
and chitosan film fabrication, chitosan nanomaterials [86,87].
Chitin films that have been DES-plasticized exhibited remarkable
performance, including greater elasticity and decreased tensile
strength. However, the poor biocompatibility of DES components
restricts their usage in the food and pharmaceutical industries.
Thus, a superior alternative, natural deep eutectic solvents
(NADESs), which are composed of biological metabolites such as
amino acids, choline and sugar, was proposed [88]. NADESs is
superior to DES for its biodegradability, sustainability, low toxicity
and preparation cost because of its natural composition [89]. Addi-
tionally, the NADESs method is not only more environmentally
friendly and efficient, but also produces chitin with a chemical
structure comparable to that of chitin produced using conventional
acid/alkali processes [90,91].
Ethylenediaminetetraacetic acid (EDTA)
As an alternative to hydrochloric acid, EDTA is a metal chelator

that can demineralize chitin [92]. The chitin molecular chain is not
significantly affected by this chemical procedure, and EDTA can be
readily recovered or recycled. This process produced much higher
levels of chitin than the enzymatic method, but less than the chem-
ical method. Reaction time was much lowered concurrent with a
decrease in pollution hazards.
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Electrochemistry of chitin and derivatives

Along with green solvents, electrochemistry - a field that has
been less investigated- is also gaining increasing popularity. In a
study, shrimp shells were electrolytically treated with 1% acidic
and alkaline water at 20 V for 6 h [93]. After complete removal
of minerals and proteins, 19.5% of the extraction ratio was recov-
ered. Chitin extracted using electrochemical techniques has
approximately the same physicochemical characteristics as chitin
extracted using conventional chemical techniques. The electro-
chemical extraction method uses little reagent and is effective. It
may be a safer option than chemical ones for the environment.
The preparation method is though still in its infancy, with needed
work to ascertain the ideal ratio of chemical reagents to produce
products with high levels of purity and chitin yield [94].

Comparison and proposal of chitin extraction methods

Overall, chitin is often extracted using single or combination of
chemical, biological and physical techniques, with physical tech-
niques commonly utilized to aid extraction. In recent years,
numerous innovative extraction techniques have evolved to over-
come the potential shortcomings of acid-base procedures, includ-
ing electrochemical technology and green solvents (ILs, DESs,
EDTA). All chitin extraction methods and their characteristics are
listed in Fig. 6. According to the ‘blue economy’ and ‘circular econ-
omy’ in modern societies, the extraction process for chitin would
limit its applications. The review of chitin extraction methods
has shown potential deficiencies. For example, chemical extraction
methods are very economical and efficient, and are widely used in
industry. Recovered chitin can be used to develop sorbents and
batteries for environmental and energy applications, but is not
suited for use in the production of related food products due to
Fig. 6. A comparison of the advantages and disadvant
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residual acids and bases. Eco-friendly biological methods meet
the requirements of green development, but are less efficient and
can be combined with chemical techniques aimed at increasing
efficiency with minimal chemical treatment. Therefore, combining
chemical, biological and physical techniques or investigating more
cost-effective, environmentally friendly extraction methods can
help expand the industrial production of chitin, and raise the stan-
dard of the final product. Besides, the development of large-scale
studies for chitin recovery of various chemical or biotechnology
methods is also still necessary.

Application of chitin and its derivatives

Chitin and its derivatives are rich bioresources with nontoxicity,
non-allergenicity, renewability, sustainability, high biodegradabil-
ity, and biocompatibility and possess many biological properties,
including antioxidant, antimicrobial, antifungal, anti-coagulant,
antitumor, anti-cancer, cholesterol-lowering properties and bioad-
hesiveness [95]. Therefore, they are accordingly applied in a wide
range fields, such as agriculture, food, wastewater management,
cosmetics, textile and paper industry, pharmaceuticals, biomedi-
cine (Fig. 7) [96]. According to the statistics of the global chitin
market, the reported net value of the chitin market was USD 36
million in 2019 and is projected to reach USD 53 million by 2024
[97].

Agriculture
Chitin and its derivatives with interesting antimicrobial and

eliciting properties are anticipated to exert significant positive
impacts upon their application in agriculture [98]. (1) Crop growth.
Chitosan and its derivatives are effective in improving seed
germination, promoting crop growth, increasing crop yield and
improving quality [99,100]. (2) Effectiveness against pest and
ages of the different chitin extraction techniques.



Fig. 7. A comprehensive overview of chitin applications and its derivatives.
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pathogens, e.g. fungi, bacteria, nematodes, insects and viruses
[101,102]. (3) Crop defense. The application of chitosan and its
derivatives induces the production of various resistant substances
such as lignin, resistance proteins and guaifenesin in plants, mini-
mizing the damage caused to crops by stresses of adversity [103].
(4) Fertilizer and soil amendments. Chitin’s low C/N ratio and high
nitrogen concentration can be used to promote crop development
and microbial activity in the soil [104]. (5) Fruit and vegetable
preservatives. Fresh fruit and vegetables can be coated with chi-
tosan to prevent bacterial and pathogen deterioration, extend shelf
life, maintain quality, and reduce water loss [105,106].

Food
Chitosan has strong antioxidant activity and is recommended as

a food preservative [107,108]. Besides,[108] chitosan possesses
antibacterial qualities that guard against microbial food spoilage,
off flavors and extend the shelf life of the foods [109–111]. The
internal molecules of microorganisms seep out when the positive
charges in chitinous materials interact with the negative charges
of bacterial cell walls, which is assumed to be the reason for their
antibacterial activity [27]. Active edible or biodegradable packag-
ing has also been developed using chitosan’s antimicrobial charac-
teristics [112] Chitosan added to food can confer specific functional
effects that contribute to human health, such as weight loss and fat
reduction, gastrointestinal health, age-delaying, cancer inhibition
[92,113].

Wastewater management
For decades, non-toxic and biodegradable chitosan and chitosan

have been utilized as coagulating agents, cheating polymers, or
bio-absorbents in water treatment due to their strong absorbance,
chelating, and affinity capabilities [114,115]. Due to their polyca-
tionic properties, they can agglomerate and precipitate at neutral
or alkaline pH. Moreover, the polymer long chain may enhance
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contact with the contaminated medium [116]. As a result, chitosan
has potnetial advantage compared with other polysaccharides
(such as cellulose or starch) in that its chemical structure permits
specialized alterations to design polymers for particular applica-
tions. Reactive groups have the capacity to combine several chem-
icals to form composites. Instead, the cationic charge can
successfully neutralize and flocculate the anionic suspended col-
loidal particles, lowering the levels of turbidity, chlorides, and
chemical oxygen demand in wastewaters [117]. Chitosan is used
as a coagulant/flocculent for contaminated wastewaters, in heavy
metal or metalloid adsorption (Cu(II), Zn(II), Pb(II), Cd(II), Fe(III),
Cr(III), etc.) [118,119], and to remove dyes from industrial
wastewater as well as other organic pollutants like organic
oxidized, organochloride pesticides, or fatty and oil impurities
[120].
Cosmetics
Chitosans alongside their derivatives can be produced with var-

ious chain lengths and distinctive properties for their use in cos-
metics, including skin care (face and body creams, make-up,
lotions and nail lacquers), hair care (hair additions, hair colorant,
hair spray and shampoos), and oral care (toothpaste, oral hygiene
agent, mouthwashes and chewing gum) [121]. The majority of chi-
tosan products cannot enter the skin due to their exceptionally
high molecular weight, which is a significant advantage that makes
them suitable for skin care. They can either be employed in solid
form or dissolved in aqueous solutions. Chitosan has special prop-
erties that are employed in cosmetics, such as its ability to produce
foam, retain moisture, be antistatic, bacteriostatic, fungistatic, and
release bioactive compounds under controlled conditions [122].
Chitosan is also widely used in cosmetic formulations because it
interacts well with other ingredients such glucose, starch, oils,
lipids, waxes, acids, saccharose, polyols, nonionic emulsifiers, and
nonionic water-soluble gums [105].
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Textile and paper industry
In recent years, due to the similarity of chitosan molecule to cel-

lulose, water-solubility and bioadhesiveness with their positive
charges, chitin and its derivatives can be used in texture and paper
industry, for both internal and surface applications [123,124]. In
the textile sector, they are commonly used in a wide range of prod-
ucts, such as chitosan nonwoven fabrics, chitosan fibers and yarn,
pretreatment of textiles, dyeing, printing, and functional fabric fin-
ishing [125]. In the papermaking industry, chitin and its deriva-
tives can be used for improving the wet and dry strength of
paper [126,127], showcasing the compatibility of chitosan with
paper stock components, and demonstrating its capacity to func-
tion as a retention and drainage additive, or as a dye fixative in
the production of colored paper [128]. In the meantime, research
is being conducted on chitosan’s intrinsic antibacterial characteris-
tics and its capacity to form films for prospective uses in paper-
making, establishing the groundwork for creating useful papers
like greaseproof paper and antibacterial paper [129]. Chitosan is
posed as an interesting and feasible option for producing high-
value, ecologically friendly paper. However, the economics of chi-
tosan’s widespread applicability in the paper industry have not
yet been considered [130].
Biomedical applications
Chitin and its derivatives have gained more recent attention for

use in pharmaceuticals and biomedicines due to their biocompat-
ibility, biodegradability, and lack of toxicity [50]. The Food and
Drug Administration (FDA) announced that the usage of chitosan
in foods and drugs is considered safe, devoid of contaminants,
and has good adsorption and moisturizing properties [131]. They
also exhibit several biological and physiological traits with proven
health benefits. These polymers alongside their derivatives, for
instance, exhibit antioxidant, antibacterial, anticancer, immune-
stimulating, hypocholesterolemic, hypoglycemic, ACE inhibitor,
and anticoagulant properties [132]. In the biomedical field, chitin
and its derivatives are usually used for drug delivery, bone regen-
eration, blood cholesterol control, tissue engineering, wound heal-
ings and enzyme immobilization [132–136]. Given their
wettability, mechanical stability, flexibility, optical clarity, trans-
parency, gas permeability, and immunological compatibility, chitin
and its derivatives are particularly well-suited for use in the pro-
duction of contact lenses [137,138].
Crustaceans’ proteins and related molecules

The properties of protein hydrolysates in CBPs

Protein, which can account for up to 40% of the total wast
weight depending on processing methods and species, is another
component found in the waste stream that has potential nutri-
tional value and function [139]. Shrimps and crabs have compara-
ble protein content, while lobsters exhibit lower levels [140].
Crustacean proteins are rich in non-protein nitrogen (amino acids,
peptides and nucleotides) and their richness in arginine, glutamic
acid, glycine and alanine can be used as dietary supplements for
humans or animals [141]. In addition, the amino acid composition
of crustacean proteins is similar to that of red meat proteins [1].
Collectively, the nutritional value of crustacean protein is compa-
rable or superior to that of soy protein, milk protein and red meat
protein due to its optimal amino acids composition [3,10].
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Bioprocesses for isolating protein from crustaceans

Chemical extraction
The protein found in CBPs is strongly linked to chitin and min-

erals. Similar to chitin, the method of recovering proteins from
CBPs involves deproteination. The most commonly used DP strat-
egy is chemical hydrolysis using acidic or alkaline reagents because
of its low cost, rapidness and high protein recovery. Despite being a
common and easy-to-use method, chemical extraction has some
negative effects such as environmental pollution, decreased nutri-
tional quality, and a poor final product value [45].
Fermentation process method
Studies demonstrated that biotechnology based methods are

more safer, cleaner, greener, environmentally friendly and cost
effective process as they maintain the physical and functional
integrity of the ingredients of interest [142,143]. Autolysis, enzy-
matic processes, and fermentation have all been highlighted as
three biotechnological techniques [144,145]. The crustacean’s nat-
ural digestive enzymes are used in autolytic method for protein
extraction. For instance, shrimp heads or residues can be used as
a source of protein via an autolytic method [146]. The effectiveness
of protein recovery is increased by shrimp-crab endo-enzymes and
autolysis, which also produced important small peptides for fish
nutrition [147].
Enzymatic extraction
In the enzymatic hydrolysis method, enzymes such as Pro-

tamex, Flavourzyme and mainly Alcalase are frequently used
[148,149]. In addition to separating proteins and peptides,
enzymes can also hydrolyze proteins into free amino acids, making
them more accessible, depending on the degree of hydrolysis [31].
Enzymatic hydrolysis is the most widespread biotechnological
technique for releasing bioactive peptides from proteins in CBPs
because of the mild and controlled conditions, minimizing the risk
of adverse reactions [150]. Moreover, enzymatic extraction is
widely used in the pharmaceutical and food industries due to the
absence of harmful chemical residues. Precision is provided by this
technique, which also enhances the end product’s physical, chem-
ical, and organoleptic qualities while preserving its nutritional con-
tent [151,152]. However, this method still has several drawbacks,
including lower yields, taste problems, general economic viability,
and a lack of uniform hydrolysates.
Isoelectric solubilization/precipitation (ISP)
The more innovative, ecological and economical techniques,

such as ISP, are necessitated to recover nutritious and functional
protein isolate from CBPs [153]. The ISP method depends on alter-
ing protein solubility by adjusting pH, which changes the net elec-
trical charge of proteins [154]. When CBPs proteins are dissolved,
they are dispersed from lipids and other insoluble substances like
bones, skins, etc. The approximate composition of protein isolates
obtained by ISP processing changes depending on protein source,
pH and the type of acid and base utilized during ISP. This approach
not only results in high yield protein recovery but also in high-
quality protein with increased nutritional and functional value
[155]. ISP technique has been utilized to recycle fish protein in lab-
oratory and pilot size applications due to its ease of use and speed
[154]. Compared with traditional methods, ISP method has signif-
icant advantages, and has great nutraceutical food application
potential in protein recovery from CBPs.
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The application of protein hydrolysates in CBPs

Crustacean proteins, which are highly delicious, palatable, and
nutritious, are also used in pharmaceuticals, cosmetics, human
and animal nutrition, and the treatment of diabetes, cancer, hyper-
tension, inflammation, and neurodegenerative illnesses
[149,156,157]. For example, protein hydrolysates that were
extracted from the by-products of lobsters showed outstanding
emulsifying properties [158]. Hydrolyzed lobster by-product pro-
tein could be employed as flavor enhancers in a variety of designed
food products [3], improving water-binding or lowering lipidemic
effects of animal protein [73]. Additionally, protein hydrolysates
represent a rich source of nitrogen for microorganisms in their
growth environment [159,160]. Currently, these proteins are not
extensively used as they are destroyed during the recovery process,
but the World Bank estimates that if waste from South East Asia
were simply made into protein meals, the market value would be
over $100 million annually [10].
Crustaceans’ lipids and pigments

The properties of crustaceans’ lipids

Crustacean shells are abundant in omega fatty acids, polyunsat-
urated fatty acids (PUFAs) and lipid-soluble vitamins (A, D, E, K)
that vary in context to species, gender, weather and environment
[161]. Eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), which are well known for their medicinal and nutraceutical
applications, were the two primary omega-3 fatty acids in PUFAs
and are found at higher levels in specific organs, i.e., liver and pan-
creas in shrimps, the head of lobsters, and the gonads of crabs
[162,163]. In comparison with other crustaceans (crabs and
shrimps), lobsters have the highest lipid level, with different com-
position in various lobster body areas [164]. A comparison of lipid
content between crustaceans showed that crabs have a signifi-
cantly lower proportion of lipids in edible tissue than shrimps
[165].

The properties of crustaceans’ pigments

The fat-soluble pigments carotenoids, including zeaxanthin,
lycopene, b-carotene, lutein and astaxanthin, the oxidized form
of carotenoids, provide crustaceans with their characteristic pink-
orange colour [166]. Astaxanthin (C40H52O4) is the most prevalent
carotenoid in crustacean shells, accounting for ca. 75%–95% of total
pigment concentration [166]. Crustaceans astaxanthin levels vary
according to the species, season, and other environmental circum-
stances. Generally, they are twice as high in lobster by-products
than in shrimp, but still lower than in crab [3]. Red fat-soluble pig-
ment astaxanthin requires FDA permission before it may be used
as a food colorant [167]. Most of the astaxanthin used in commer-
cial products is created synthetically. As a result, discarded CBPs
provide a significant potential supply of natural astaxanthin.
Astaxanthin can be found in free form or as complex proteins
called carotenoproteins in crustaceans. Astaxanthin has 10 fold
higher antioxidant activity than zeaxanthin, lutein, canthaxanthin,
and b-carotene, and 100 fold higher antioxidant activity than a-
tocopherol [3].

Extraction methods of lipids and pigments

Solvent extraction
Solvent extraction for recovering lipids and astaxanthin has

always been the most prevalent method considering their lipophi-
lic nature [168]. Different solvent types are crucial to the extrac-
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tion process and yields. Solvent selection has been based on
factors such as solvent toxicity, solvent polarity, handling risk, ease
of solvent removal, etc. [169]. Acetone, ethanol, ethyl acetate, hex-
ane and isopropanol are a few organic solvents that have been
approved for use in the food industry. Acetone is recommended
as the most suitable astaxanthin extraction agent among those
investigated because of its structure’s abundance of carbonyl
groups, many of which are quite comparable to those found in
astaxanthin [170]. Moreover, the effects of single organic solvents
and mixed solvents (isopropyl alcohol: hexane = 1:1) on astaxan-
thin extraction were also studied, and results showed that the
higher extraction rate was achieved with mixed solvents. Other
organic solvents including alcohol and vegetable oils are used for
safer extraction compared with traditional solvent extraction
[171].

Solvent extraction is considered expensive, time-consuming,
hazardous and environmental unfriendly. A poorer yield is
obtained and huge amounts of solvent are consumed when the
wrong solvent is used. Besides, the abundance of organic solvents
damages the structure of astaxanthin and reduces its stability.
The toxicity and flammability of solvents and the difficulty of
removing traces of solvents from the final product have prompted
the development of alternative extraction procedures that are
green and environmentally friendly.

Supercritical fluid extraction (SFE)
SFE uses supercritical fluids, primarily CO2 under supercritical

conditions, to extract biologically active molecules from solid or
liquid materials, overcoming the drawbacks of conventional sol-
vent extraction [172]. SFE is a quick and effective extraction tech-
nique without the use of potentially harmful organic solvents.
Another significant benefit is the simplicity of solvent separation
following extraction because CO2 turns into a gas at ambient tem-
perature [173]. Since supercritical CO2 (SC-CO2) is an inert, afford-
able, nonflammable, nontoxic, and usually regarded as safe solvent,
it is perfect for usage in the food business (GRAS). Since SFE does
not require high temperatures for processing, it is especially
employed to extract heat-sensitive substances like carotenoids
and lipids. The SC-CO2 method has been widely used in shrimp
by-products, lobster livers and crab shell waste [161,174]. How-
ever, the cost of adopting SFE technology and its economic viability
on an industrial scale are two important factors that limit the use
of SFE in the food industry.

Pulsed electric field (PEF) extraction
PEF, a non-thermal method, has been widely employed in the

food industry for biomaterial extraction [175]. PEF has a minimal
operating cost and barely raises the samples’ temperature [176].
The PEF device consists of three main parts: a high voltage pulse
generator that produces high voltage pulses using high capacity
capacitors, a treatment chamber that contains the sample to be
treated and two electrodes, and an oscilloscope that records the
wave of applied pulses. PEF technology can replace conventional
extraction techniques to boost the extraction yields of bioactive
compounds whether used alone or in combination with other
extraction procedures as an intensification pre-treatment [177].
For example, setting electric field intensity at 4–16 kV cm�1, PEF
pretreatment of the Pacific white shrimp cephalothorax boosted
the extraction rate of lipids by 61.3% [178].

Other novel extraction methods
In addition to SFE and PEF, other novel methods that have

recently been applied to the extraction of lipids and carotenoids
from CBPs include UAE, MAE, enzyme-assisted extraction, high-
pressure processing method and microbial fermentation [170].
UAE is increasingly popular due to various benefits such as



Table 1
Advantages and disadvantages of the lipids and pigments extraction methods.

Technology Characteristics Advantages Disadvantages

Conventional solvent
extraction

Widely used technique;
Uses a variety of organic solvents

No need for any special
experimental setup;
Economical of all methods

Longer extraction times;
Lower extraction yields;
Higher solvent consumption;
Loss of active compounds

Supercritical fluid
extraction

High diffusivity of supercritical fluids facilitate
extraction of bioactive compounds

Short extraction time;
Negligible solvent
consumption;
High yield and purity of
obtained products

Difficult to optimize conditions;
High capital cost

Pulsed electric field extraction A non-thermal technique that involves passing a
high-voltage electric current through a sample that
is positioned between two electrodes for a very
short time

Less time and energy
consumption;
Mostly suitable for
thermolabile compounds;
High yields for carotenoids
extraction

Not suitable for low moisture products
due to low conductivity;
High capital cost;
Limited extraction of lipophilic
compounds

Ultrasonic assisted
extraction

Utilization of ultrasonic waves to generate cell
disintegration and the cavitation effect, allowing for
simple solvent penetration

Higher extraction yield or rate;
Increase the yield of lipids;
Enhancing yield extraction of
heat-sensitive components

Scale-up to industrial applications still
needs to be explored and optimized;
Can lead to degradative processes such as
lipid oxidation and hydrolysis

Z. Zhang, Z. Ma, L. Song et al. Journal of Advanced Research xxx (xxxx) xxx
increased extraction yield, decreased solvent usage, faster extrac-
tion rates, improved repeatability, simplicity of scaling-up, and
higher purity of final products [178]. UAE of Pacific white shrimp
cephalothorax increased lipid and carotenoid extraction yield by
almost twofold [179]. MAE has been extensively used to extract
valuable components. Shrimp cephalothorax was microwave-
pretreated, then the output of shrimp oil and carotenoids was
increased [180]. Enzyme-assisted extraction can recover lipids
and carotenoids, e.g. proteases with the ability to hydrolyse com-
plex molecules and cell membranes, releasing the target substance
during the extraction process. Alcalase was used to increase
shrimp lipid output as a result of protein hydrolysis of shrimp
by-products [181]. A comparison of the advantages and disadvan-
tages of lipids and pigments extractionmethods is shown in Table 1
[180,182].

The application of lipids in CBPs

The high bioavailability of lipids makes them ideal for applica-
tion as novel and beneficial dietary supplement, flavor enhancers,
food ingredient and oil supplement [183]. Research shows that
the intake of food rich in polyunsaturated acids has a certain pro-
portion to the low mortality rate of cardiovascular complications
such as stroke, owing to their capacity to control dyslipidemia,
mainly cholesterol, obesity control and anti-inflammatory activi-
ties [184]. The fatty acids found in crustaceans also have the char-
acteristics of preventing and treating cognitive impairment,
nutrition, and brain development, especially in children and
elderly people [185]. They are also widely used as dietary supple-
ments for the treatment of CNS disorders such as Alzheimer’s dis-
ease, Parkinson’s disease’s disease and schizophrenia, memory
decline, and resistance to oxidative stress [186]. In addition,
omega-3 is used to treat cancer because it has significant anti-
tumor effects at high concentrations [187].

The application of pigments in CBPs

In our bodies, these carotenoids are regarded as the source of
vitamin A [188]. Carotenoids’ antioxidant properties make them
valuable commercially, as they can be used to enhance health
rather than only as food coloring or feed additives [189]. Astaxan-
thin has been used in cosmetic, food and pharmaceutical industries
because of its superior antioxidant activity [170,190]. Particularly,
astaxanthin has demonstrated potential for improving human
health and for the prevention and treatment of a number of ill-
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nesses (anti-cancer, anti-inflammatory, anti-diabetic, anti-lipid
peroxidation, cardioprotective, neuroprotective, etc.) [191]. Nowa-
days, astaxanthin products can be purchased in the market in the
following forms: biomass, capsule, cream, energy drink, oil and
granulated powder, soft gel, syrup and tablet [167]. As a result,
astaxanthin is a high-value product being increasingly sold as a
functional food component, with prices ranging from US$3,000 to
US$12,000 per kilogram [192]. The demand for it on the interna-
tional market is rising and is anticipated to reach $2.57 billion by
2025 [193].
Crustaceans’ minerals composition

The properties of crustaceans’ minerals

Crustaceans shell wastes encompass several minerals including
calcium, phosphorus, magnesium, nitrogen etc., which vary in level
between the different species and demineralization methods. Dif-
ferent forms of calcium salts can be obtained using different acids
under appropriate temperature, time and acid concentration [194].
The predominant minerals in crustacean’s shell is calcium carbon-
ate as calcite, amorphous calcium carbonate, and tricalcium phos-
phate as hydroxyapatite [195]. Calcium carbonate is mainly
generated from geological sources, which has the advantage of
being a very productive source, but it also has some disadvantages,
such as the presence of heavy metals that are difficult to remove.
As a result, this biological calcium carbonate source is more accept-
able for human consumption. In addition, investigations based on
Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravi-
metric Analysis (TGA) have shown that crab shells contain more
calcium carbonate than lobster and shrimp shells [196]. The mar-
ket price for coarsely ground calcium carbonate is ca. $60–66 per
ton, but the value of calcium carbonate processed into ultra-fine
particles can reach $14,000.
Extraction methods of minerals

Chemical extraction
Demineralizing the rawmaterial is necessary in order to recover

the minerals. Since the carbonate combines with the acidic sub-
stance to create the precipitation of minerals, this technique is typ-
ically carried out with acids, most commonly HCl. Depending on
the reaction variables, such as the temperature, pH, time, and
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amount of acids used, the amount of minerals produced through
DM by acids ranges from 69.4 to 100%.

Biotechnology extraction
The fermentation of crustaceans’ shells typically involves the

use of microorganisms like Lactobacillus sp, which can produce lac-
tic acid and enzymes. However, just like in the chemical technique,
the lactic acid produced by these organisms combines with the cal-
cium carbonate contained in the shells to form calcium lactate,
which is easily removed by washing [144]. The quantity, reaction
time, species of the inoculated organism, environmental variables
including pH and temperature, as well as the presence of carbon
sources i.e., glucose being the most prevalent carbon source- all
contribute to the efficacy of this procedure [70].

The application of minerals

Minerals of CBPs (mainly calcium carbonate) can be used in the
manufacture of pigments, fillers, soil conditioners, rubber, plastics
and in the construction, paper, pharmaceutical and agricultural
industries [10,197]. Besides, calcium carbonate can be utilized as
a terrestrial and aquaculture fertilizer, and its nanoparticles can
be used in phytopharmaceuticals or insecticides due to their envi-
ronmental friendliness, outperforming pyrethroids, organophos-
phates, and spinosad [198]. Calcium oxide, which is generated
from calcium carbonate, acts as a catalyst in the generation of bio-
diesel [168].

Additionally, phosphates are present in comparatively high con-
centrations in CBPs. Protein stabilizers, emulsifiers, antioxidants,
texture enhancers, and microbiological control agents are a few
of the examples that phosphates contribute to food processing
[199]. To increase the extraction of bioactive substances, phos-
phates are utilized as additives [200]. Phosphates are used by the
processing industry, primarily in seafood, to alter the structural
configuration of tissues. These residues also contain sodium-
bound phosphates that are used in medicine, such as monosodium
and disodium phosphate that is used as a laxative in drugs.
Conclusions and future directions

The global crustacean processing industry generates large
amounts of by-products that are currently discarded or underuti-
lized, resulting in high disposal costs. Meanwhile, many valuable
biological resources, such as chitin, proteins and lipids, are wasted,
creating an environmental burden. This multifaceted review dis-
cusses in a comparative manner the high-value compounds in dif-
ferent crustaceans and their main applications in agriculture, food,
water treatment, nutrition, cosmetics, paper, textile, pharmaceuti-
cals and biomedicine, with comparison among different crus-
taceans for best source of each targeted chemical. In comparison
among the three crustaceans, shrimp had the highest content of
chitin, lobster had the lowest protein content but the highest lipid
content, and crab had the highest astaxanthin content.

Crustacean shell wastes are still underutilized despite their
potential value, and more studies are needed before using them
in any of the aforementioned applications. The need to commer-
cialize many of these applications must also be supported across
many industries with considering of upscaling laboratory proce-
dures to meet industrial needed. In addition, it summarizes various
extraction methods such as chemical, biological, physical, solvent,
SFE, ISP and PEF for the recovery of various active ingredients high-
lighting their advantages and limitations to aid future users decide
on optimal technologies. The rapid development of biotechnology
applications present a fast, effective, clean and controllable biopro-
cess for the comprehensive utilization of crustacean waste that has
13
yet to be applied at an industrial level. One feasible way for best
valorization practices is to combine innovative extraction tech-
niques with industrially applicable technologies to efficiently
recover these valuable components from such biowastes.

Thus, the development of simplified processes based on existing
extraction methods, combined with the economic recovery of
these valuable components using industrially applicable technolo-
gies, would be a practical solution to maximize the use of these
marine by-products. Using this approach, CBPs could become eco-
nomically more profitable than the traditional sources of contam-
ination and cost. In conclusion, there is great potential for
converting waste/biomass from crustaceans processing into
unique bio-based products, which can in turn aid to alleviate envi-
ronmental pressures and landfill/disposal problems. The blue bio
economy will undoubtedly help the crustacean industry move
towards a more green economy and a globally sustainable future
through the recycling and reuse of these wastes in the feed, food,
pharmaceutical and other industries.
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