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A B S T R A C T

Torreya grandis (T. grandis, Taxaceae) is both economically and medicinally valuable species being rich in various
bioactive compounds (e.g., squalene and β-sitosterol). However, the contents of these compounds are various
and cultivar specific, and the complicated regulatory mechanisms of their biosynthesis in T. grandis are still
unknown. To uncover the underlying molecular mechanisms that control the differences in the accumulation of
squalene and β-sitosterol, a comprehensive transcriptome was constructed from nine different T. grandis culti-
vars. A total of more than 60,372 unigenes were obtained, of which over 60% were successfully annotated.
Identification and expression analysis of the differentially-expressed genes (DEGs) showed that 39 candidate
genes were involved in squalene and β-sitosterol biosynthesis in T. grandis seeds. In particular, the expression
patterns of genes related to the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways indicates
that both pathways promote the upstream biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl di-
phosphate (DMAPP) in different T. grandis cultivars. Moreover, several key regulatory steps controlling the
differential accumulation of squalene and β-sitosterol between T. grandis cultivars were also discussed.

1. Introduction

Torreya is a genus in the yew family (Taxaceae) that is composed of
six species and two varieties, which are distributed in localized areas of
China, the United States, Japan, and Korea (Kang and Tang, 1995).
Torreya grandis (T. grandis), a large and ancient evergreen tree species
with linear, bristle-pointed leaves, dioecious flowers, and drupe-like
fruits with nut-seeds, is native to China (He et al., 2016; Yu et al.,
2016). T. grandis seed is not only one of the world’s most rare nut, but is
also an important traditional medicine that is widely used to cure

coughs, excess phlegm, diarrhea, to expel parasites, and prevent mal-
nutrition (Ni and Shi, 2014; Ni et al., 2015; Wu et al., 2018). The
aforementioned medicinal quality of this plant is largely a result of the
various bioactive compounds, most notably squalene and phytosterol
found in the seeds (Chen et al., 2006; Ni et al., 2015; He et al., 2016).
Squalene and phytosterols are the compounds present in the un-

saponifiable lipid fraction of kernel oils and beneficial to health
(Weihrauch and Gardner, 1978; Delgado-Zamarreno et al., 2009).
Squalene is a 30-carbon isoprenoid with six double bonds which acts as
the key intermediate for the biosynthesis of phytosterols (Liao et al.,
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2016). In plants, the dominant phytosterols include β-sitosterol, cam-
pesterol, and stigmasterol, the first one being the most abundant.
Squalene and β-sitosterol are considered pharmacologically significant
in antimicrobial, anti-inflammatory, anti-oxidative, anticancer, and
immunomodulating effects (Ye and Chang, 2010; Ambavade et al.,
2014). Also, squalene is an important constituent of skin-care products,
oxidation-resistant industrial lubricants, and numerous vaccines (Fox,
2009). These compounds’ highly coveted pharmacological and biolo-
gical characteristics have given rise to increasing demand for squalene
and β-sitosterol, and their biosynthetic pathway has attracted a sub-
stantial amount of attention (Paramasivan et al., 2018; Qiao et al.,
2018; Ramadan et al., 2019).
Thus far, the biosynthetic pathways of squalene and phytosterols

have been well documented (Valitova et al., 2016), as both are derived
from a common 5-carbon precursor, isopentenyl diphosphate (IPP) and
its isomer dimethylallyl diphosphate (DMAPP), which are formed via
either the cytosolic mevalonate (MVA) pathway or the plastidial me-
thylerythritol phosphate (MEP) pathway (Nagegowda, 2010). The MVA
pathway begins with 3-acetyl-CoA giving rise to IPP, while the MEP
pathway synthesizes IPP and DMAPP from pyruvate and glycer-
aldehyde-3-phosphate (GAP). Among them, 3-hydroxy-3-methyl-glu-
taryl-coenzyme A synthase (HMGS) and 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase (HMGR) catalyze the first and second committed
steps in the MVA pathway (Bach, 1995). The overexpression of both
leads to a higher sterol content in numerous plants, such as Arabidopsis,
Nicotiana tabacum, and Ginkgo biloba (Harker et al., 2003; Wang et al.,
2012; Li et al., 2014). Furthermore, it has been reported that HMGR
activity in Arabidopsis has been observed to be regulated not only at the
transcriptional level but also at the post-translational level (Hemmerlin
et al., 2013). In addition, 1-deoxy-D-xylulose-5-phosphate synthase
(DXS), 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), and 1-
hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) are
also reported as the key enzymes in controlling carbon flux in the MEP
pathway (Rodríguez-Concepción, 2006). The overexpression of
WsDXR2 from Withania somnifera in transgenic tobacco (Nicotiana ta-
bacum L.) exhibited a 2.5- to 3-fold increase in enzyme activity and an
increased accumulation of sterols (Singh et al., 2014). In addition, a
positive correlation between HDR transcript level and plastid iso-
prenoid accumulation was observed in tomato (Lycopersicon esculentum
L.) fruit and Arabidopsis seedlings (Botella-Pavía et al., 2004).
In the downstream pathway of phytosterol biosynthesis, IPP and

DMAPP precursors are further converted to C15 farnesyl diphosphate
(FPP) by farnesyl diphosphate synthase (FPS), then squalene synthase
(SQS) catalyzes the condensation of two molecules of FPP to produce
squalene (Pandit et al., 2000). Subsequently, squalene epoxidase (SQE)
converts squalene to 2,3-oxidosqualene, and cycloartenol synthase
(CAS) catalyzes 2,3-oxidosqualene to cycloartenol, which is finally
converted into end-product phytosterols after alkylation (catalyzed by
two distinct sterol C24-methyltransferases [SMTs]). In recent years,
these key genes (i.e., SQS, SQE, SMT1, and SMT2) have been cloned and
widely studied in transgenic plants (Holmberg et al., 2002; Busquets
et al., 2008; Neelakandan et al., 2010; Laranjeira et al., 2015). The
overexpression of membrane-bound SQS results in elevated levels of
phytosterols, while the expression of different copies of SQS exhibited
tissue- and organ-specific regulation in many plants (Busquets et al.,
2008; Kim et al., 2011). Both AtSQE1 and AtSQE3 seem to be func-
tionally important in the biosynthesis of sterols, where AtSQE3 is more
likely to be involved in root tissues (Laranjeira et al., 2015). The
quantity and composition of sterols in leaf and seed tissues were altered
in response to SMT1 overexpression in tobacco (Holmberg et al., 2002).
These results suggest that the regulation of sterol biosynthesis is plant
and tissue specific. Thus, a comprehensive understanding of squalene
and phytosterol biosynthesis is necessary to uncover the key genes and
critical regulatory steps for further investigation into increasing squa-
lene and phytosterol levels in plants in a beneficial manner.
In the present study, a comparative transcriptomic analysis of T.

grandis seeds from nine different cultivars were carried out to detect
candidate genes involved in squalene and phytosterols biosynthesis,
and analyze the expression of these candidate genes. Subsequently, the
relative expression of the candidate genes was validated via quantita-
tive real-time PCR (RT-qPCR). Combined with the physiological ana-
lysis of squalene and β-sitosterol contents in different T. grandis culti-
vars, a more complete picture of the squalene and β-sitosterol
biosynthetic pathway and their underlying regulatory mechanisms in T.
grandis seeds were provided. This study will not only improve our un-
derstanding of this important pathway, provide a valuable genomic
resource for the further exploration of the expression and regulation
mechanisms underlying squalene and β-sitosterol biosynthesis, but it
will also be helpful for further genetic engineering and molecular
breeding of productive T. grandis cultivars with high squalene and
phytosterol levels.

2. Materials and methods

2.1. Plant materials

Seed samples of nine T. grandis cultivars (named Z06, A19, R18,
R26, C03, Z03, Y11, Y37, and X039) used in the study were collected
from five cities of Zhejiang province (namely Zhuji, Hangzhou,
Shengzhou, Shaoxing and Fuyang) and one city of Anhui province
(Huangshan) (Additional file 1). The trees were about fifty-year-old,
and 800 g (90 seeds) were collected at four direction branches from
three trees of each cultivar. After collection, the sarcotesta (arils) and
the testa (seed coat) were removed, and the remaining hard seeds were
used for kernel sampling. Subsequently, the kernel samples were sec-
tioned separately, immediately frozen in liquid nitrogen, and stored at
−80 °C until further analysis.

2.2. Squalene and β-sitosterol analysis

Frozen T. grandis kernel samples from each cultivar were ground
into powder, and crude oil was extracted in hexane, filtered through a
0.2 μm cellulose acetate filter, and stored at −20℃ in the dark for
squalene and β-sitosterol isolation (Fernández-Cuesta et al., 2013). The
extraction of squalene and β-sitosterol from the nine cultivars of T.
grandis kernel oil was determined according to the method of
Giacometti (2001) with slight modifications. Approximately 100mg
crude oil was mixed thoroughly with 2ml of 2% KOH (w/v) ethanol
solution. Samples were vortexed briefly and then incubated at 80 °C for
15min in a water bath. The unsaponifiable lipid fraction was extracted
with 2ml hexane and centrifuged at 340×g for 10min. Next, the upper
hexane layer was transferred into a new tube and maintained in oven at
37.5 °C overnight. Finally, dried pellets were redissolved in 100 μl of
Sylon BTZ (Supelco, Bellefonte, PA, USA) and conserved at −20 °C until
further analysis.
Gas chromatography of squalene and β-sitosterol were performed

using an Agilent 7890 gas chromatograph (Agilent Technologies, Santa
Clara, CA, USA) according to the methods of Górnaś et al. (2016) with
slight modifications. A 0.5 μl aliquot of each sample was injected in
splitless mode onto a HP-5 capillary column (id= 0.32mm, length=
30m, film thickness= 0.25 μm). The injector and detector tempera-
tures were 300 °C. The initial column temperature was set to 160 °C for
2min, then programmed to 280 °C at a rate of 15 °C/min, held for
7min, increased at 5 °C/min to 300 °C, and held for 5min. Standard
stock solutions of squalene (1000 ng/μl) and β-sitosterol (1000 ng/μl)
were used as the external standards for quantifications, and the con-
centrations of squalene and β-sitosterol were calculated according to
the standard curves.

2.3. Total RNA extraction, cDNA library construction, and sequencing

Total RNA was isolated from the kernel of nine T. grandis cultivars,
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respectively, using the RNAprep Pure Plant Kit (TIANGEN, Beijing,
China). RNA quality was assessed by 1% agarose gel electrophoresis. All
RNA samples were quantified and examined (RNA purity and integrity)
using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies Inc., Wilmington, DE, USA). A total of 3 μg of T. grandis
kernel RNA per sample was used as input material, and cDNA libraries
were constructed according to the manufacturer’s instructions.
Subsequently, library preparations were assessed using the Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA, USA) and se-
quenced using the Illumina HiSeq™ 4000 platform (Illumina Inc., San
Diego, CA, USA).

2.4. De novo assembly and functional annotation

After the raw data was filtered to remove low-quality reads and
adaptor sequences, the high-quality sequence reads were further as-
sembled to obtain unigenes using Trinity software (version 6.0). The
functional annotation of the unigenes was obtained by searching
against the following six public databases: NCBI non-redundant protein
sequences (Nr), NCBI non-redundant nucleotide sequences (Nt),
SwissProt protein sequence database (SwissProt), Clusters of
Orthologous Groups of proteins (COG), the Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Gene Ontology (GO).

2.5. Differentially-expressed genes (DEGs) analysis and function
enrichment

The expression levels of the unigenes from nine T. grandis cultivars
were calculated using the fragments per kilobase per million fragments
(FPKM) method (Mortazavi et al., 2008), and the analysis of the dif-
ferential expression of DEGs was carried out using the "DESeq" R
package (version 1.10.1) with a significant threshold of |log2 (fold
change)| ≥ 2, a false discovery rate (FDR) of< 0.001, and a p-value
of< 0.05 (Anders and Huber, 2010). GO and KEGG enrichment ana-
lysis were performed to investigate the functions of the DEGs. The
"GOseq" R package was used for the GO enrichment analysis based on
Wallenius non-central hyper-geometric distribution (Young et al.,
2010), while the KEGG statistical enrichment analysis was tested using
KOBAS software (version 2.0) (Kanehisa et al., 2012).

2.6. Validation of gene expression profiles by RT-qPCR

In this study, RT-qPCR was performed to validate the expression
patterns of the candidate genes— determined by RNA-seq analysi-
s—involved in squalene and phytosterol biosynthesis. Specific primer
pairs (Additional file 2) used in RT-qPCR were designed by the online
software program Primer3 (version 0.4.0) (http://bioinfo.ut.ee/
primer3-0.4.0/). RT-qPCR amplification was performed on a CFX96
Touch Real-Time PCR System (Bio-Rad, California, USA) using the
SYBR® Green Real-Time PCR Master Mix (Toyobo, Osaka, Japan) ac-
cording to the following program: an initial denaturation step of 95 °C
for 10min, followed by 45 cycles of 95 °C for 10 s, 57 °C for 10 s, and
72 °C for 20 s. The relative expression of each gene was normalized to
actin and calculated using the 2−ΔΔCt method (Livak and Schmittgen,
2001). All samples were analyzed in at least three biological and
technical replicates.

2.7. Subcellular localization of TgFPS

To investigate the subcellular localization of key proteins in squa-
lene and β-sitosterol biosynthesis pathway, green fluorescent protein
(GFP) fusions were constructed. Full-length open reading frames (ORF)
of TgFPS (without the stop codon) were amplified by PCR using ap-
propriate primers (Additional file 3). Then the PCR products were
cloned into the binary vector 35S::GFP (modified from pCAMBIA1300)
to produce plasmids. GFP-protein fusion construct (35S::TgFPS::GFP)

was transiently expressed by agroinfiltration (Agrobacterium tumefaciens
strain GV3101) of tobacco (N. benthamiana) leaves (Sparkes et al.,
2006). Images of leaf epidermal cells were examined using confocal
laser-scanning microscopy (LSM710, Karl Zeiss).

2.8. Statistical analyses

All results in the present study are displayed as the mean ±
standard deviation of at least three replicates. Statistical analyses were
performed using a one-way ANOVA in SPSS 18.0 (SPSS Inc., Chicago,
IL, USA). The least significant difference (LSD) was used to test the
means and a p-value of< 0.05 was considered statistically significant.

3. Results

3.1. Squalene and β-sitosterol contents in the seeds of various T. grandis
cultivars

Squalene and β-sitosterol levels were examined in T. grandis seeds
from nine cultivars by gas chromatography, and the compounds were
identified by comparing retention time with standard records of squa-
lene (retention time of 11.0min) and β-sitosterol (retention time of
16.7 min) (Fig. 1). According to the results, the contents of squalene
and β-sitosterol varied depending on the cultivar (Fig. 2a and b).
Squalene was accumulated to a much greater degree in the cultivars
Y11, Y37, and X039, with the concentration of 61.87mg/kg, 66.20mg/
kg, and 71.40mg/kg, respectively. In contrast, β-sitosterol was present
in the largest quantities in cultivars X039, Z03, and Y37, with the
content of 3409.13mg/kg, 3608.33mg/kg, and 4082.40mg/kg, re-
spectively. Both compounds exhibited the minimum contents in the
cultivars Z06 (14.92 ± 1.61mg/kg) and A19 (1650.81 ± 76.97mg/
kg), respectively (Fig. 2a and b). In addition, moderate-strong positive
correlations (correlation coefficient of 0.6239) were found between the
contents of squalene and β-sitosterol (Fig. 2c). In addition, in in-
vestigating oil yield in the different T. grandis cultivars, oil content was
found fluctuated between 20% to 50%, and was the highest in the
cultivars Z06 and Y11 (Fig. 2d). A negative correlation was observed
between oil yield and β-sitosterol content (Fig. 2e).

3.2. Transcriptome assembly, annotation, and the classification of unigenes
in T. grandis cultivars

After filtering out low-quality reads and adaptor sequences, more
than 58.29 million clean reads were obtained from nine different T.
grandis cultivars, where the total sequence length for each cultivar was
greater than 8,743,986,300 nt and the average GC content was 46.20%
(Table 1). The Q30 and Q20 values were greater than 96.24% and
90.69% (Table 1). Subsequently, the de novo assembly of these high-
quality reads resulted in a total of 60,372 to 66,948 unigenes from the
nine T. grandis cultivars (Table 2). A functional annotation of the uni-
genes was performed by BLASTing the sequences against the Nr, Nt,
SwissProt, COG, KEGG, and GO databases using an E-value threshold of
10−5. As a result, total of 36,357 to 40,271 unigenes (over 60.22%)
were successfully aligned to known genes in at least one of the six
public databases, and 2,958 to 3,181 unigenes were annotated in all
seven databases (Table 2).
Based on the GO functional annotations, a total of 59,071 unigenes

were categorized into three main categories: biological process, cellular
component, and molecular function (Additional file 4). There were a
total of 23 classifications in the biological process category, where
cellular process (33,868 unigenes) and metabolic process (34,147 uni-
genes) represented two of the largest groups. In the cellular component
category, cell (30,414 unigenes) and cell part (30,226 unigenes) re-
presented the two most abundant GO terms of the 20 different groups.
In terms of the molecular function category, unigenes were clustered
into 15 classifications, where binding (23,472 unigenes) and catalytic
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activity (27,041 unigenes) were observed to be the two dominant
subcategories (Additional file 4).

3.3. Analysis of DEGs from different T. grandis cultivars

In order to investigate DEGs in the nine T. grandis cultivars, ex-
pression levels of the unigenes were compared with cultivar Z06. It was
observed that more than 3,521 upregulated and more than 7,492
downregulated unigenes were identified (Fig. 3). In order to further
explore the functions of DEGs, a KEGG pathway enrichment analysis
was performed. In total, 20 significantly enriched pathways in the up-
and downregulated unigenes were found (Fig. 4). Metabolic pathways
and the biosynthesis of secondary metabolites represented two of the
dominant pathways associated with most of upregulated unigenes in T.
grandis cultivars (Fig. 4a). Most notably, genes involved in sesqui-
terpenoid and triterpenoid biosynthesis and steroid biosynthesis ex-
hibited high relative expression levels (Additional file 5). Of the
downregulated unigenes, the enrichment analysis yielded five sig-
nificantly pathways (each pathway contains more than 200 unigenes),
including plant hormone signal transduction, starch and sucrose me-
tabolism, RNA transport, mRNA surveillance, and spliceosome
(Fig. 4b).

3.4. Identification and expression of candidate genes involved in squalene
and β-sitosterol biosynthesis in T. grandis cultivars

Based on transcriptome results, a total of 39 candidate unigenes

were identified to be involved in squalene and β-sitosterol biosynthetic
pathways (Fig. 5; Additional file 6). Of these, nine transcripts were
found to encode five enzymes in the MVA pathway: HMGS, HMGR,
mevalonate kinase (MK), phosphomevalonate kinase (PMK), and me-
valonate-5-pyrophosphate decarboxylase (MDC). Gene expression le-
vels of the five enzymes were induced in most of the T. grandis cultivars
in comparison with Z06 (Fig. 5; Additional file 6). In addition, 15 of the
unigenes representing six enzymes in the plastid MEP pathway were
also identified: DXS, DXR, 2-C-methyl-D-erythritol 4-phosphate cytidy-
lyltransferase (MCT), 4-(cytidine-5-diphospho)-2-C-methy-D-erythritol
kinase (CMK), 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase
(MCS), and HDR. DXS catalyzes the first step in the MEP pathway to
form 1-deoxy-D-xylulose-5-phosphate (DOXP), whereupon DOXP is
further converted to MEP by DXR, and MEP is finally transformed into
IPP by the consecutive enzymatic actions catalyzed by MCT, CMK, MCS,
and HDR (Valitova et al., 2016). From the transcriptome results, DXS,
MCT, CMK, and MCS were found to be upregulated in most T. grandis
cultivars, while the expression of DXR and HDR were only increased in
the T. grandis cultivars A19 and R18 in comparison with Z06 (Fig. 5;
Additional file 6). Therefore, the gene expression levels of the majority
of genes involved in the MVA and MEP pathways were found to be
upregulated in most T. grandis cultivars, where the increased accumu-
lation of these upstream components of the MVA and MEP pathways
could contribute to the subsequent biosynthesis of squalene and β-si-
tosterol.
In terms of the downstream components of the squalene and β-si-

tosterol biosynthetic pathways, the reversible conversion between IPP

Fig. 1. Gas chromatogram of squalene and β-sitosterol of standard solution (a) and Torreya grandis seed sample (b). The retention times were approximately 11.0min
and 16.7min for squalene and β-sitosterol, respectively.

J. Suo et al. Industrial Crops & Products 131 (2019) 182–193

185



and DMAPP is catalyzed by isopentenyl diphosphate isomerase (IPI),
whereupon IPP and DMAPP are transformed to geranyl diphosphate
(GPP, C10), farnesyl diphosphate (FPP, C15), and geranylgeranyl di-
phosphate (GGPP, C20) by GPP synthase (GPS), FPP synthase (FPS), and

GGPP synthase (GGPS), respectively. Subsequently, SQS catalyzes the
condensation of FPPs to produce squalene (Pandit et al., 2000). A total
of five transcripts—encoding IPI, GGPS, FPS, and SQS—were identified,
three out of the five transcripts (GGPS, FPS, and SQS) were found to be
upregulated in T. grandis cultivars, most notably in Y37 and X039
(Fig. 5; Additional file 6). Sequence analyses showed that the deduced
amino acid sequence of TgSQS encodes 409 amino acids with three
conserved domains (A–C) and one transmembrane region in the C-
terminal region that is composed of 18–20 amino acid residues (Addi-
tional file 7). TgSQS exhibited a high degree of similarity with AtSQS1
and AtSQS2 sequences, and several conserved residues were also found
to be present in their corresponding domains, especially the highly
conserved Phe287 residue (Phe285 in TgSQS), which is considered to be
important for the SQS activity of AtSQS1 (Additional file 7). Moreover,
a correlation analysis found that the expression patterns of
TgSQS—resulting from the T. grandis transcriptome analysis (FPKM-fold
change)—exhibited a moderate positive correlation (r2=0.4705; p <
0.05) with squalene content in different T. grandis cultivars (Fig. 6a). In
addition, several enzymes (SQE, CAS, and SMTs) involved in the con-
version of squalene to β-sitosterol were also identified (Additional file

Fig. 2. Squalene and β-sitosterol content (a–b), correlation between squalene and β-sitosterol (c), oil content (d), and correlation between oil and β-sitosterol content
(e) in seeds of different Torreya grandis cultivars.

Table 1
Summary of sequences analysis of Torreya grandis transcriptomes.

Cultivars Clean
reads (bp)

Clean
nucleotide (nt)

Q20 a

(%)
Q30 b

(%)
GC content (%)

Z06 64,368,136 9,655,220,400 97.08% 92.25% 45.96%
A19 62,790,404 9,418,560,600 97.10% 92.52% 46.95%
R18 62,018,746 9,302,811,900 96.82% 91.90% 46.38%
R26 58,293,242 8,743,986,300 96.24% 90.69% 46.38%
C03 61,873,548 9,281,032,200 97.65% 93.61% 45.88%
Z03 59,683,260 8,952,489,000 97.20% 92.46% 45.57%
Y11 62,375,848 9,356,377,200 98.33% 95.62% 46.00%
Y37 64,010,630 9,601,594,500 98.37% 95.74% 46.79%
X039 65,105,340 9,765,801,000 98.34% 95.53% 45.87%

a Q20, the base quality score (Q score) was no less than 20.
b Q30, the base quality score was no less than 30.
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6). SQE and CAS catalyze the two-step cyclization of squalene into
cycloartenol, and SMT1 and SMT2 subsequently catalyze the first and
second alkylations of cycloartenol (Holmberg et al., 2002; Valitova
et al., 2016). Transcriptome analysis found that SQE, CAS, and SMT2
transcripts exhibited various patterns of expression in different T.
grandis cultivars, while the level of SMT1 expression was significantly
increased, especially in cultivars X039, Z03, and Y37 (Additional file 6).
Furthermore, a correlation analysis showed that the expression of
TgSMT1 was strongly correlated with β-sitosterol ( r2=0.8065; p <
0.01) (Fig. 6b).

3.5. RT-qPCR confirmation of RNA-seq data

To validate the accuracy and reliability of the gene expression
patterns from RNA-Seq results, 16 candidate genes involved in squalene
and β-sitosterol biosynthesis were selected from the DEGs for further
RT-qPCR analysis. As expected, the patterns of differential expression
for these genes in the nine T. grandis cultivars exhibited great similarity
to those calculated by the FPKM method from the transcriptome data
(Fig. 7a). Furthermore, a Pearson correlation analysis—used to test the
correlation between the RT-qPCR and RNA-Seq results—yielded a sig-
nificant positive correlation (correlation coefficient of 0.7637) between
the two methods (Fig. 7b).

3.6. Subcellular localization of GFP-tagged proteins involved in squalene
and β-sitosterol biosynthesis

To experimentally determine the subcellular localization of the key
proteins in the squalene and β-sitosterol biosynthetic pathways, the

ORFs of relative genes were cloned and fused to GFP under the control
of the CaMV35S promoter. Finally, TgFPS::GFP was successfully con-
structed and expressed in the epidermis cells of tobacco leaves. FPS
belongs to the short-chain prenyltransferase subfamily of proteins,
which are distributed in the cytosol, mitochondria, chloroplast, and
peroxisome (Thabet et al., 2011). While TgFPS::GFP in the present
study displayed multi-localizations, strong signals were observed in the
plasma membrane, while additional fluorescent signals were detected
in the nucleus (Fig. 8a–d).

4. Discussion

4.1. Accumulation patterns of squalene and β-sitosterol in T. grandis seeds
varies among cultivars

Owing to the valuable biological properties of squalene and β-si-
tosterol, more and more studies have focused on quantifying and in-
vestigating the biosynthesis of these compounds (Nagegowda, 2010). In
the present study, the contents of squalene and β-sitosterol in the seed
of nine T. grandis cultivars varied from 13 to 72mg/kg and from 1500
to 4100mg/kg, respectively (Fig. 2a and b). These results were higher
than those reported by He et al. (2016) and Shi et al. (2018), where
squalene contents ranged from 13 to 38mg/kg, and β-sitosterol ranged
from 900 to 1300mg/kg and 1200 to 2500mg/kg, respectively. How-
ever, it is important to note that the observed differences in the con-
centrations of squalene and β-sitosterol were cultivar-dependent, both
in the present study as well as in previous reports (He et al., 2016; Shi
et al., 2018). As we know, squalene is the necessary intermediate in the
β-sitosterol biosynthesis pathway (Liao et al., 2016), and thus the

Table 2
Statistics of annotations for assembled unigenes in the nine cultivars of Torreya grandis transcriptomes.

Cultivars Nra Ntb SwissProtc COGd KEGGe GOf Annotated in all database Annotated in at least one database Total unigenes

Z06 40,271 7,860 32,249 21,497 27,595 26,135 3,181 40,271 66,948
A19 39,128 7,670 31,410 21,017 26,865 25,568 3,126 39,135 64,947
R18 39,038 7,670 31,305 20,984 26,860 25,573 3,151 39,046 64,691
R26 39,052 7,646 31,323 21,045 26,874 25,590 3,131 39,093 64,546
C03 38,682 7,607 31,106 20,861 26,644 25,368 3,130 38,730 64,396
Z03 38,696 7,579 31,067 20,854 26,639 25,382 3,110 38,741 64,238
Y11 38,188 7,515 30,601 20,611 26,307 25,064 3,105 38,232 63,397
Y37 36,316 7,187 29,075 19,656 25,054 23,861 2,958 36,357 60,372
X039 39,716 7,778 31,915 21,303 27,332 25,878 3,165 39,757 66,160

a NCBI non-redundant protein sequences (Nr).
b NCBI non-redundant nucleotide sequences (Nt).
c SwissProt protein sequence database (SwissProt).
d Clusters of Orthologous Groups of proteins (COG).
e Kyoto Encyclopedia of Genes and Genomes (KEGG).
f Gene Ontology (GO).

Fig. 3. Analysis of differentially expressed genes (DEGs) in different Torreya grandis cultivars.
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concentration of squalene may affect the accumulation of β-sitosterol,
which was consistent with the observations that squalene and β-sitos-
terol contents were found significantly correlated, and both of them
accumulated relatively high levels in the cultivars Y37 and X039
(Fig. 2a–c). Similarly, the substantial influence of cultivar on squalene

and β-sitosterol contents has been reported in many other plant species
(Manzi et al., 1998), where squalene content in different cultivars of
olive (Canarium album L.) oil typically ranges from 200 to 7500mg/kg
(Fernández-Cuesta et al., 2013) and 100 to 170mg/kg in different
cultivars of grape (Vitis vinifera L.) seed oils (Wen et al., 2016). The

Fig. 4. KEGG enrichment of up-regulated (a) and down-regulated (b) genes among different Torreya grandis cultivars.
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Fig. 5. Schematic presentation of squalene and
β-sitosterol biosynthetic pathways in Torreya
grandis seeds. Enzymes and their relative gene
expression patterns are shown in the pathway.
The scale bar indicates FPKM ratios of different
T. grandis cultivars (Z06, A19, R18, R26, C03,
Z03, Y11, Y37, and X039), while different colors
from blue to red indicate the relative gene ex-
pression levels of T. grandis cultivars compared
with Z06. Abbreviations: CAS, cycloartenol syn-
thase; CMK, 4-(cytidine-5-diphospho)-2-C-
methy-D-erythritol kinase; DMAPP, dimethylallyl
diphosphate; DXR, 1-deoxy-D-xylulose 5-phos-
phate reductoisomerase; DXS, 1-deoxy-D-xylu-
lose-5-phosphate synthase; FPS, farnesyl dipho-
sphate synthase; GAP, glyceraldehydes-3-
phosphate; GGPS, geranyl diphosphate synthase;
HDR, 1-hydroxy-2-methyl-2-(E)-butenyl-4-di-
phosphate reductase; HMBPP, (E)-4-hydroxy-3-
methylbut-2-enyl diphosphate; HMGR, 3-hy-
droxy-3-methyl glutaryl coenzyme A reductase;
HMGS, 3-hydroxy-3-methyl glutaryl coenzyme A
synthase; IPI, isopentenyl diphosphate iso-
merase; IPP, isopentenyl diphosphate; MCS, 2-C-
methyl-D-erythritol-2,4-cyclodiphosphate syn-
thase; MCT, 2-C-methyl-D-erythritol 4-phosphate
cytidylyltransferase; MDC, mevalonate-5-pyr-
ophosphate decarboxylase; MEP, methylery-
thritol phosphate; MK, mevalonate kinase; MVA,
mevalonate; PMK, phosphomeralonate kinase;
SMTs, Δ24-sterol methyl transferases; SQE,
squalene epoxidase; SQS, squalene synthase.

Fig. 6. Correlation analysis between TgSQS FPKM fold change and squalene content (a), TgSMT1 FPKM fold change and β-sitosterol content in different Torreya
grandis cultivars (b).
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content of β-sitosterol has also been shown to be cultivar-dependent in
Cocos nucifera (50–380mg/kg), Trachycarpus fortunei oil (60–400mg/
kg), and in Arachis hypogaea (120–1200mg/kg) (Phillips et al., 2002; de
Jong et al., 2003), and was generally lower in other plant species than
in T. grandis cultivars X039, Z03, and Y37. Altogether, these results
suggest that these three T. grandis cultivars could be a potential natural
source of β-sitosterol, and that the biosynthesis of β-sitosterol might be
different regulated among T. grandis cultivars. In addition, the sig-
nificant negative correlation between oil content and β-sitosterol con-
tent found in the present study was consistent with previous results
obtained for apple (Malus domestica L.) seeds (Górnaś et al., 2014).

These results may provide valuable information that could be used for
the preliminary estimates of β-sitosterol content merely based on as-
sessments of oil yields in different plant cultivars. However, further
studies should be performed to fully understand and explain this phe-
nomenon.

4.2. Expression pattern of genes involved in MVA and MEP pathways in T.
grandis cultivars

The de novo biosynthesis of squalene and β-sitosterol has been stu-
died in many plants (Nes, 2011). Some studies indicated that

Fig. 7. RT-qPCR validation of RNA-seq relative expression estimation. (a) RT-qPCR analysis of gene expression patterns of 16 selected candidate genes involved in
squalene and phytosterol biosynthesis among different Torreya grandis cultivars. (b) Correlation of the expression levels of the selected genes measured by RT-qPCR
and RNA-seq.
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phytosterols are mainly synthesized via the MVA pathway rather than
the MEP pathway (Rosenwasser et al., 2014), while it also showed that
metabolite exchanges or cross-regulation seem to occur between the
two biosynthetic pathways in some plants (Laule et al., 2003). In the
present study, genes (including HMGR, MK, and MDC) involved in the
MVA pathway were upregulated in most T. grandis cultivars in com-
parison with Z06 (Fig. 5; Additional file 6). Among them, HMGR cat-
alyzes the rate limiting step in the MVA pathway (Bach, 1995). The
overexpression of rubber (Hevea brasiliensis L.) HMGR in transgenic
tobacco increased phytosterol levels in its seeds (Harker et al., 2003).
Thus the elevated expression of TgHMGR (BRD_TGR92 and
BRD_TGR9470) suggested a positive role for the MVA pathway in the
accumulation of IPP and DMAPP in most T. grandis cultivars. Further-
more, the higher relative expression of TgMK and TgMDC in T. grandis
seeds may also contribute to the accumulation of these initial pre-
cursors. This is consistent with the overexpression of PgMDC in trans-
genic lines of Panax ginseng, which exhibited 4.4 folds higher phytos-
terol content than that of the wild-type control (Kim et al., 2014). In
addition, six genes involved in the MEP pathway were identified in
transcriptome, where the expression of DXS and MCT was also upre-
gulated in most T. grandis cultivars in comparison with Z06 (Fig. 5;
Additional file 6). Both of these enzymes have been shown to play
important roles in the MEP pathway. The overexpression of the DXS
gene triggered a remarkable increase in isoprenoid precursors in nu-
merous plants, such as Lavandula latifolia (Miñoz-Bertomeu et al.,
2006), Catharanthus roseus (Peebles et al., 2011), and Salvia miltiorrhiza
(Kai et al., 2011). Furthermore, the downregulation of AtMCT resulted
in a dramatic reduction in IPP and DMAPP biosynthesis in transgenic
Arabidopsis (Okada et al., 2002). In this case, the upregulation of these
key genes suggests that both the MVA and MEP pathways may be active
in different T. grandis cultivars during the early stage of steroid bio-
synthesis (Fig. 5; Additional file 6). However, the upregulated genes
from both pathways did not exhibit significant differences between T.

grandis cultivars or display consistent trends in the contents of squalene
and β-sitosterol, which varied depending on the cultivar (Fig. 2; Ad-
ditional file 6). These results suggest that it is likely that the upstream
isoprenoid biosynthetic pathway does not determine the biosynthetic
abilities of squalene and β-sitosterol in T. grandis seeds. The C5 pre-
cursors (IPP and DMAPP) not only contribute to the accumulation of
squalene and β-sitosterol, but also are the universal terpene precursors
for the biosynthesis of a wide range of steroids. Therefore, the MVA and
MEP pathways may be important for the biosynthesis of IPP and
DMAPP in T. grandis cultivars, while the accumulation of squalene and
β-sitosterol probably are regulated by related key genes in the down-
stream pathway.

4.3. The key regulatory steps controlling squalene and β-sitosterol
biosynthesis in different T. grandis cultivars

In the downstream steroid biosynthesis pathway, the short-chain
isoprenyl diphosphate synthases (IDSs; including GPS, FPS, and GGPS)
have been proposed as the first key branch-point enzymes in the cata-
lyzation of IPP and/or DMAPP to form the different precursors (GPP,
FPP, and GGPP), thereby controlling the biosynthesis of different
classes of steroids (Schmidt and Gershenzon, 2008). Previous studies
have suggested that each specific IDS generally corresponds to only one
single product (Schmidt and Gershenzon, 2008). However, a novel bi-
functional PaIDS1 was found to possess the ability to form 90% GPP
and 10% GGPP in the gymnosperm of Picea abies (Schmidt et al., 2010).
In the present study, the upregulated unigene BRD_TGR72198 was
identified with the annotation of putative TgGGPS, while a sequence
analysis indicated that it was slightly more similar to PaIDS1 (61.5%)
than to GPS (PaIDS2, 55.9%) and GGPS (PaIDS5, 58.5%) (Additional
files 6 and 8). These results indicate that the role of TgGGPS may be
similar to that of PaIDS1, and may provide not only GGPP, but also a
substantial portion of the GPP required for squalene and β-sitosterol

Fig. 8. Subcellular localization of TgFPS. Confocal images of TgFPS::GFP (a) and plasma membrane marker (b), corresponding transmitted light images (c), and their
merge images (d). White and blue arrows indicate nuclei, Bar= 20 μm.
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biosynthesis. Furthermore, the membrane-bound squalene synthase
(SQS) is another key enzyme in the squalene and sterol biosynthesis
pathway (Radisky and Poulter, 2000; Huang et al., 2007). There are
two members of SQS-annotated sequences in Arabidopsis (AtSQS1,
At4g34640 and AtSQS2, At4g34650), while only AtSQS1 was found to
be a functional SQS (Busquets et al., 2008). In this study, one SQS
(TgSQS; BRD_TGR604) was identified. Sequence analysis showed that
the deduced amino acid sequence of TgSQS shared high similarities
with AtSQS1 and AtSQS2 (Additional file 7). Moreover, the highly
conserved residue Phe287 (domain C) was also found in TgSQS, as this
specific site is considered to be important for the SQS activity of AtSQS1
(Additional file 7) (Busquets et al., 2008). These data indicate the
catalytic/functional activity of TgSQS in T. grandis. Furthermore, a
positive correlation between TgSQS transcript levels and squalene
content was observed (Fig. 6a). This suggested that the expression
patterns of TgSQS may be important to regulate the accumulation of
squalene in different cultivars, indicating that TgSQS is the key control
point in the squalene biosynthesis pathway in T. grandis.
In addition, as a necessary intermediate for β-sitosterol biosynthesis,

squalene is known to be transformed to cycloartenol by a two-step
cyclization (Valitova et al., 2016). Cycloartenol is further converted
into β-sitosterol after alkylation events that are catalyzed by two dis-
tinct SMTs (Holmberg et al., 2002). SMT1 is a critical enzyme that
catalyzes the first committed step in regulating the carbon flux toward
sterol biosynthesis (Holmberg et al., 2002). It has been proposed that
SMT1 could act as a regulator of seed sterol content, where over-
expressing SMT1 was shown to increase the quantity of β-sitosterol by
approximately 30%–50% in tobacco seeds (Holmberg et al., 2002).
Consistent with this, transcriptional levels of TgSMT1 were upregulated
in T. grandis seeds in the present study, especially in the cultivars X039,
Z03, and Y37 (Fig. 5; Additional file 6). The expression of TgSMT1 was
also positively correlated with β-sitosterol content in the seeds of T.
grandis (Fig. 6b). The fact that the expression of TgSMT2 was clearly
downregulated in most T. grandis cultivars in comparison with Z06
(Fig. 5; Additional file 6) suggests that post-transcriptional regulation
may be important for the enzymatic activity of TgSMT2. These findings
confirm the strong correlation of squalene and β-sitosterol contents
with the transcript levels of biosynthetic genes in different cultivars of
T. grandis. Moreover, several key regulatory steps have been proposed
to play important roles during squalene and β-sitosterol biosynthesis in
different T. grandis cultivars. However, more research is clearly re-
quired to further elucidate the molecular mechanisms that regulate
squalene and β-sitosterol biosynthesis in different cultivars of T. grandis.

5. Conclusion

In the present study, the concentrations of squalene and β-sitosterol
were investigated in different cultivars of T. grandis. Results noted clear
cultivar-specific patterns in the accumulation of squalene and β-sitos-
terol, which suggests that the biosynthetic regulation of these bioactive
compounds might be different among T. grandis cultivars. In addition,
the identification and analysis of DEGs from the transcriptome analysis
of T. grandis cultivars indicates roles for both MVA and MEP pathways,
suggesting that the biosynthesis of squalene and β-sitosterol occur via
both pathways. Moreover, transcriptional profiling also provides new
insights into our understanding of the molecular mechanisms and key
regulatory steps underlying squalene and β-sitosterol biosynthesis.
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