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A B S T R A C T   

Vitamin B3, derived primarily from plant sources, is an essential nutrient for humans. Torreya grandis is rich in 
vitamin B3, however, the mechanism underlying the biosynthesis and regulation of vitamin B3 in T. grandis re-
mains unclear. A systematic transcriptomic investigation was thus conducted to identify the gene expression 
pattern of vitamin B3 biosynthesis in 10 T. grandis cultivars. The findings suggest that biosynthesis occurs mainly 
via the aspartate pathway. Expression and correlation analyses indicate that aspartate oxidase (AOX) and qui-
nolinate synthase (QS) may play important roles in vitamin B3 accumulation. Furthermore, co-expression 
network and ethephon treatments indicate that the ethylene response factor (ERF) may be involved in the 
regulation of vitamin B3 biosynthesis in T. grandis nuts. Our findings not only help to elucidate the biosynthesis of 
vitamin B3, but also provide valuable resource material for future genomic research and molecular-assisted 
breeding to develop genotypes with higher vitamin B3 levels.   

1. Introduction 

B vitamins are essential human nutrients as they are involved in 
numerous pivotal metabolic processes (Fitzpatrick et al., 2012). Vitamin 
B3, also known as niacin, has long been recognized for its role as a 
cofactor or coenzyme in the synthesis of NAD+ and NADP+ in the human 
body, and it thus contributes to numerous metabolic processes (Roje, 
2007). Severe vitamin B3 deficiency usually leads to pellagra (Fitzpa-
trick et al., 2012; Stea et al., 2018). Vitamin B3 has been suggested to be 
effective in serious of disease, such as angiocardiopathy, reduced serum 
lipid and cholesterol levels, malignant tumors, and skin cancer (Miret 
and Munné-bosch, 2014; Liu et al., 2020; Luo et al., 2020; Ratnarajah 
et al., 2020). It is derived mainly from plant sources, primarily vegeta-
bles, grains, and derived products (oils) (Fitzpatrick et al., 2012). 
However, species, cultivars, and storage organs differ widely in their 
vitamin B3 content (Lebiedzińska and Szefer, 2006; Wolak et al., 2016). 
It is therefore essential to examine the levels, biosynthesis, and 

molecular regulation of vitamin B3 in plants. 
The pathways involved in vitamin B3 biosynthesis have previously 

been debated (Roje, 2007). Initially, the aspartate and tryptophan 
pathways were thought to be involved. However, subsequent studies 
have suggested that de novo vitamin B3 biosynthesis in plants occurs 
mainly via aspartate precursors, whereas in animals, fungi, and some 
bacteria, it occurs via the tryptophan pathway (Katoh et al., 2006; 
Ashihara et al., 2015). Furthermore, genomic and bioinformatic 
research using relevant databases has indicated that Arabidopsis syn-
thesizes vitamin B3 from the aspartate pathway, whereas rice utilizes 
both aspartate and tryptophan as starting amino acids (Katoh and 
Hashimoto, 2004; Katoh et al., 2006). In the aspartate pathway, nic-
otinate mononucleotide (NaMN) is formed from L-aspartate via the 
catalysis of aspartate oxidase (AOX), quinolinate synthase (QS), and 
quinolinate phosphoribosyltransferase (QPT) (Roje, 2007). NaMN is 
converted first to nicotinic acid adenine dinucleotide, then to nicotin-
amide adenine dinucleotide (NAD), and then finally degraded to vitamin 
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B3 by various enzymes (Gerdes et al., 2012). Most of the enzymes in the 
aspartate pathway, including AOX, QS, QPT, NAD synthase, and nico-
tinamide deamidase (NIC) have been isolated, although the gene for 
nicotinamide mononucleotide nucleosidase (NMNN) has not yet been 
identified (Katoh et al., 2006; Gerdes et al., 2012; Hao et al., 2018). 
Studies in Arabidopsis suggest that AOX, QS, NaMN adenyltransferase 
(NNAT), and NAD synthase play essential roles in the aspartate pathway 
(Hashida et al., 2007; Schippers et al., 2008). Mutations in AOX, QS, 
QPT, and NNAT not only block the biosynthetic pathway but also affect 
the growth and development of the plants themselves (Sinclair et al., 
2000; Hashida et al., 2007; Hao et al., 2018). 

In addition, several recent studies have shown the regulatory role of 
phytohormones in the gene expression of enzymes in the aspartate 
pathway (Li et al., 2019). A mutation in the AtQS gene influences ABA 
signal transduction in Arabidopsis and the expression of the QS gene is 
repressed directly by ABI4, a transcription factor (TF) in the ABA 
response pathway (Hong et al., 2020; Wei et al., 2020). NtMYC2, a 
transcription factor in jasmonic acid (JA) signaling, can recognize the 
promoter regions of QPT and activate the expression of QPT in trans-
genic tobacco (Hashimoto and Shoji, 2011). Ethylene response factor 
(ERF)-type transcription factors, including ERF189, have recently been 
identified as direct and specific regulators of tobacco QPT2 (Shoji & 
Hashimoto, 2011). However, the enzymes and the transcriptional 
regulation of genes responsible for vitamin B3 biosynthesis is not yet 
completely understood and previous work has mostly focused on the 
model plants Arabidopsis and tobacco (Roje et al., 2007). Consequently, 
for most plants, little is known about their biosynthesis and molecular 
regulation of vitamin B3, and the genomic characteristics and differen-
tial expression patterns for the genes in the vitamin B3 biosynthesis 
pathway has not yet been described. A comprehensive understanding of 
the steps and regulatory mechanisms in this pathway is therefore 
required and will help to enable the improvement of plant vitamin B3 
levels via genetic and metabolic engineering approaches. 

Torreya grandis (Taxaceae) is an important economic tree species 
native to China, with dioecious flowers and drupe-like fruits with nut- 
seeds (He et al., 2016). Roasted- T. grandis nuts are popular and 
economically important, as they are highly nutritious. Furthermore, 
they are also a natural source of medicinal and edible foods and nutra-
ceutical supplements, especially for the high contents of bioactive 
compounds and vitamins (Ni et al., 2015; He et al., 2016; Wu et al., 
2018; Lou et al., 2019; Suo et al., 2019). Nowadays, although vitamin 
biosynthesis has been widely studied in plants, vitamin B3 biosynthesis 
in T. grandis is not well understood. It is likely that vitamin B3 levels vary 
widely with geographical distribution, development stage, and cultivar 
(Kim et al., 2014). However, to the best of our knowledge, these dif-
ferences, and the regulatory mechanisms of vitamin B3 biosynthesis, 
have not yet been examined for T. grandis. Most notably, knowledge is 
lacking about the genomic characteristics and expression patterns of 
genes in the vitamin B3 biosynthetic pathway of T. grandis. 

Therefore, our primary objective was to determine vitamin B3 levels 
in the nuts from different T. grandis cultivars. The secondary objective 
was to identify candidate genes and the probable regulatory mecha-
nisms that were involved in vitamin B3 biosynthesis. We found that 
vitamin B3 contents were highly dependent on the cultivar and differ-
ential gene expression, which suggested that the de novo biosynthesis of 
vitamin B3 occurs mainly via the aspartate pathway in T. grandis nuts. 
Furthermore, the key genes regulating vitamin B3 accumulation among 
the different T. grandis cultivars were identified using Pearson’s corre-
lation analysis, sequence alignment, and phylogenetic analysis. More-
over, a potential regulatory mechanism of the key genes expression was 
also proposed using the co-expression network and exogenous ethylene 
experiments. These findings will help to elucidate the key genes and 
regulatory steps controlling vitamin B3 levels in T. grandis nuts. Our 
results will be valuable for future molecular research and genetic 
screening for vitamin B3-rich T. grandis genotypes. 

2. Material and methods 

2.1. Plant materials 

Samples from 10 T. grandis cultivars (Z08, S14, W03, R19, Y05, A17, 
A33, R14, Y44, and Z05) were collected from the cities of Zhuji, Fuyang, 
Huizhou, Shengzhou, Huangshan, and Shaoxing, in Zhejiang and Anhui 
provinces (Table S1). The trees were maintained using the standard 
fertilization, irrigation, and pest control practices recommended for 
Torreya cultivars (Dai et al., 2008). The nuts were collected at the 
mature stage (120 days after seed protrusion, DASP) from all 10 culti-
vars. Then the kernel samples, with the sarcotesta and testa removed, 
were sectioned, and immediately frozen in liquid nitrogen and stored at 
− 80 ◦C, for later vitamin B3 determination, transcriptome sequencing, 
and quantitative real-time (qRT)-PCR analysis. 

2.2. B vitamin assay 

For the extraction of the B vitamins, T. grandis kernel (0.5 g) samples 
were ground into a powder. The extraction method for vitamins B1, B2, 
and B9 was in accordance with that described by Al-Farga et al. (2016). 
For the extraction, 5 mL of 30% metaphosphate was added to the 
samples, macerated in a glass blender, and then diluted to 25 mL. The 
extraction of vitamin B3 was according to the GB 5009.89–2016. The 
powder was extracted in 25 mL of distilled water, followed by the 
addition of 5 mol/L hydrochloric acid and 5 mol/L sodium hydroxide 
solution, to adjust the pH to 4.5. Both mixtures were extracted using a 
sonicator at 50 ◦C for 10 min, then centrifuged at 3000×g for 10 min, 
and then the supernatant was filtered through a 0.45 µm filter mem-
brane (Whatman Inc., Maidstone, UK) before HPLC analysis. The B 
vitamin content analyses were performed using an Agilent 1200 series 
HPLC system (Agilent, Böblingen, Germany). The injection volume was 
20 µL for each sample, and a C18 column was used, with a column 
temperature of 25 ◦C. The mobile phase was 5 mmol/L sodium 1-hexa-
nesulfonate with 0.7% acetic acid (v/v) and 0.2% triethylamine (v/v) 
(solvent A), and methanol (solvent B), and the flow rate is 1.0 mL/min. 
The gradient elution profile was as follows: 0–8 min, 0% B; 8–20 min, 
0–25% B; 21–30 min, 25–45% B; 30–31 min, 45–0% B; and 31–45 min, 
0% B. 

2.3. RNA extraction, cDNA preparation, and sequencing 

RNA samples were extracted from the kernels of each cultivar using 
an RNAprep Pure Plant Kit (Tiangen, Beijing, China) according to the 
manufacturer’s instructions. The quantity and quality (purity and 
integrity) of the total RNA was then determined using a NanoDrop ND- 
1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, 
USA) and agarose gel electrophoresis. The cDNA libraries were con-
structed from a total of 3 µg RNA samples, according to the standard 
protocol. The paired-end sequencing was performed in Hangzhou He Yi 
Gene Technology Co., Ltd, and the Illumina HiSeq™ 4000 platform 
(Illumina Inc., San Diego, CA, USA) was used. 

2.4. Functional annotation and differentially expressed gene (DEG) 
analysis 

De novo assembly of the mRNA-seq reads was performed using 
Trinity v. 6.0, and unigene functions were annotated using a BLASTX 
search against the following databases: Nr (http://www.ncbi.nlm.nih. 
gov/), Nt (http://www.ncbi.nlm.nih.gov/), SwissProt (http://www. 
uniprot.org/), COG (http://www.ncbi.nlm.nih.gov/COG/), KEGG 
(http://www.genome.jp/kegg/), and GO (http://www.geneontology. 
org/). The expression of unigenes were calculated using the fragments 
per kilobase per million fragments (FPKM) method, and the differential 
expression of the unigenes was judged using the absolute value of log2 
(fold change) ≥ 1, false discovery rate (FDR) < 0.001, and p < 0.05. 
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After that, the function of the DEGs was analyzed by GO and KEGG 
pathway enrichment (Suo et al., 2019). 

2.5. Phylogenetic tree and sequence analysis 

Phylogenetic tree analysis of selected genes was constructed using 
MEGA 6.0, and using the neighbor-joining method with 1000 bootstrap 
replicates. Amino-acid sequence alignment was performed using DNA-
MAN 6.0. 

2.6. Gene co-expression network analysis 

Pearson’s correlation coefficients (r) were calculated to select the 
positive and negative correlations between vitamin B3 contents and the 
TFs expression in the nuts of different T. grandis cultivars. On this basis, 
we further analyzed the correlations between candidate transcription 
factors and the FPKM value of genes in the B3 biosynthesis pathway, 
then the correlations were used to construct the dynamic network and 
visualized with Cytoscape (version 4.0). 

2.7. RNA isolation and qRT-PCR analysis 

A subset of the unigenes involved in vitamin B3 biosynthesis were 
assessed using qRT-PCR analysis on a CFX96 Real-time PCR system (Bio- 
Rad, Hercules, CA, USA). The PCR primers used in this study are listed in 
Table S2 and Table S3, and the program was as follows: 95 ◦C for 10 min, 
followed by 40 cycles of 10 s at 95 ◦C, 10 s at 57 ◦C, and 20 s at 72 ◦C. 
Then a melting curve analysis was added that starting at 60 ◦C and 
increasing to 95 ◦C. The relative expression level of each gene was 
determined using the 18S gene as an endogenous reference and was 
calculated according to Livak and Schmittgen (2001) using the 2− ΔΔCt 

method. The experiments were repeated three times. 

2.8. Effects of ethylene treatment on vitamin B3 biosynthesis 

To verify the effects of ethylene on vitamin B3 biosynthesis regula-
tion, T. grandis nuts were harvested in September 2019. Those with no 
infection or physical damage were selected for the ethylene treatment 
(ethephon solutions, Sigma) with the treatment concentration of 4000 
mg/kg according to preliminary experimental results. The treatment 
and control group were stored at a constant temperature of 25 ℃ and 
relative humidity of 90%, and three biological replicates were carried 
out. During the treatments, nut samples were collected after 0, 3, 6, and 
9 days for vitamin B3 assay and gene expression analysis. 

For the determination of the vitamins and their derivatives after 

ethylene treatment, we performed metabolomic profiling analysis. After 
freeze-drying, the samples were ground into powders and kernel 
metabolite extracts were prepared using the method described by Chen 
et al. (2020). Metabolite screening was performed using an Ultra Per-
formance Liquid Chromatography (Shim-pack UFLC SHIMADZU 
CBM30A) system coupled with tandem mass spectrometry (Applied 
Biosystems 6500 QTRAP). The flow phase and mass spectrometry con-
ditions were in accordance with those described by Chen et al. (2020). 

2.9. Statistical analysis 

SPSS 18.0 (SPSS Inc., Chicago, IL) was used to carry out one-way 
ANOVA and Student’s t test analyses and a P < 0.05 was considered 
statistically significant. 

3. Results and discussion 

3.1. Vitamin B3 levels vary with the T. grandis cultivars 

The vitamin B complex has important functions in energy meta-
bolism and as it cannot be synthesized in the human body it must be 
replenished in the daily diet (Strohm et al., 2016). Plants are one of the 
main sources of B vitamins in the human diet (Fitzpatrick et al., 2012). 
However, most vitamins are concentrated in the outer layers of the 
grain, and certain kinds of processing may greatly reduce their levels 
(Slavin, 2015). Various legumes, seeds, and nuts, such as sesame, sun-
flower, and pumpkin seeds, also the B vitamins-rich diet sources (Leb-
iedzińska and Szefer, 2006). 

We previously measured B vitamin (B1, B2, B3, and B9) levels in 
T. grandis nuts, and among them, the B3 levels tended to be much higher 
than those of the other water-soluble B vitamins (Fig. 1A). Hence, we 
focused on vitamin B3 in this study. The results showed that vitamin B3 
levels differed among the T. grandis cultivars, and the highest vitamin B3 
levels were in cultivars S14 and W03, at 0.43 mg/100 g and 0.45 mg/ 
100 g, respectively (Fig. 1B). Similarly, it has been found in other plants 
that the vitamin B3 levels are highly dependent on the variety and 
cultivar (Kim et al., 2014). Niacin levels ranged from 2.2 − 4.0 mg/100 g 
in the seeds of black and yellow soybean varieties (Kim et al., 2014), 
while vitamin B3 levels ranged from 0.55 to 0.94 mg/100 g in walnut 
kernels from three varieties (Jentsch and Morgan, 1949). Overall, these 
results suggest that the content of vitamin B3 varied with the different 
T. grandis cultivars, and that cultivars S14 and W03 may be potential 
natural sources of vitamin B3 and thus crucial for future research and 
functional breeding. 

Fig. 1. B vitamin contents in nuts of 10 Torreya grandis cultivars. (A) Contents of vitamin B1, B2, B3, and B9 in nuts of Torreya grandis; (B) Contents of vitamin B3 in 
nuts of different Torreya grandis cultivars. 
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3.2. The biosynthesis and key enzymes controlling vitamin B3 
accumulation in different cultivars 

As vitamin B3 is crucial for human health, so is our understanding of 
its biosynthesis mechanisms (Roje, 2007; Fitzpatrick et al., 2012). In the 
study, the transcription profiles of nuts in 10 T. grandis cultivars were 
sequenced. At least 54,343,810 paired-end clean reads were obtained 
from each cultivar, with average Q20 and Q30 values of 97.44% and 
93.32%, respectively, and an average GC content of 46.23% (Table S4). 
The putative functions of the assembled unigenes were annotated by 
aligning them with several public protein databases with an E-value <
0.00001. The overall functional annotation is described in Table S5 and 
Table S6. DEG analysis found that at least 2045 upregulated and 5411 
downregulated unigenes were differentially expressed in the cultivars, 

compared with their expression in cultivar Z08 (Fig. S1). Subsequently, 
gene ontology (GO) and KEGG enrichment was applied to classify the 
functions of the DEGs (Fig. S2). Among the top categories, the biosyn-
thesis of secondary metabolites was significantly enriched (Fig. S3). 
Furthermore, we performed quantitative RT-PCR analysis to confirm the 
expression levels of the genes identified by RNA-seq analysis. A signif-
icant positive Pearson’s correlation (r2 = 0.751, p < 0.01) was found 
between the RNA-seq data and the qRT-PCR results (Fig. S4). 

Although there is some controversy regarding vitamin B3 biosyn-
thesis in plants, our transcriptome sequencing results have shown that 
consistent with the findings for Arabidopsis, de novo vitamin B3 biosyn-
thesis in T. grandis nuts occurs mainly through the aspartate pathway, 
and not the tryptophan pathway (Katoh et al., 2006; Noctor et al., 2006; 
Roje, 2007). Our transcriptome profiling analysis identified almost all 

Fig. 2. Schematic presentation of vitamin B3 biosynthesis in Torreya grandis nuts. The scale bar indicates FPKM ratios, colors from blue to red indicate the relative 
expression level for each gene in vitamin B3 biosynthesis pathway. Enzymes in red/black color indicate genes identified/ do not identified in T. grandis cultivars, 
enzyme in blue color indicate gene missing in all plants. Abbreviations: 5′-N, 5′-nucleotidase; AOX, aspartate oxidase; NADpp, NAD pyrophosphatase; NADS, NAD 
synthase; NIC, nicotinamide deamidase; NMNN, nicotinamide mononucleotide nucleosidase; NNAT, NaMN adenyltransferase; NRN, nicotinamide riboside nucleo-
sidase; QPT, quinolinate phosphoribosyltransferase; QS, quinolinate synthase. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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the unigenes that participate in the aspartate pathway, including AOX, 
QS, and QPT, and seven of the unigenes encoding three of the enzy-
mes—NNAT, NADpp, and 5′-nucleotidase (5′-N) (Table S7). When 
assessing homologues of the genes specific to the tryptophan pathway, 
only kynurenine 3-monooxygenase was identified (Table S6). These 
results suggest that the main pathway responsible for vitamin B3 accu-
mulation in T. grandis is the aspartate pathway. 

Furthermore, the expression of genes in the de novo aspartate 
pathway differed substantially among the T. grandis cultivars (Fig. 2). 
Two of the AOX unigenes were downregulated in most of the cultivars, 
while the other two were upregulated in S14 and W03 and down-
regulated in the other cultivars. The expression of QS and QPT was 
highest in S14 and W03 (Fig. 2, Table S7). The expression of NNAT 
declined, while the one transcript of the NADpp unigenes was induced. 
Similarly, two of the transcripts of 5′-N were highly expressed in most 
cultivars (Fig. 2, Table S7). Therefore, most of the genes (TgAOX, TgQS, 

TgNADpp, and Tg5′-N) involved in the vitamin B3 biosynthesis pathways 
were upregulated in S14 and W03, in which a marked accumulation of 
vitamin B3 was also observed (Figs. 1 and 2, Table S7). Moreover, there 
were positive correlations between TgAOX, TgQS, and Tg5′-N tran-
scription levels and vitamin B3 contents, and the correlation coefficients 
for TgAOX3, TgQS3, and TgQS5 were greater than 0.74 (p < 0.05) 
(Fig. 3), which strongly suggested key roles for TgAOX and TgQS in the 
accumulation of vitamin B3 in the nuts of T. grandis. 

Combined with the phylogenetic and sequence analysis, TgAOX and 
TgQS were shown to have a close relationship between the proteins from 
higher plants, such as Arabidopsis and Oryza sativa, and they contained 
conserved functional domains (Fig. S5). Transgenic Arabidopsis studies 
found that AOX and QS were the rate limiting enzymes for vitamin B3 
precursor biosynthesis (Katoh et al., 2006; Hao et al., 2018). Arabidopsis 
OLD5 encodes a QS protein, and the AtOLD5 mutant showed reduced 
overall QS protein activity and disturbed the de novo pathway for NAD 

Fig. 3. Correlation analysis between vitamin B3 content and the expression level of candidate genes involved in the vitamin B3 biosynthesis pathway in nuts of 
different Torreya grandis cultivars. TgAOX1 (BRD_TGR43870), TgAOX2 (BRD_TGR18227), TgAOX3 (BRD_TGR76838), TgAOX4 (BRD_TGR16412), TgQS1 
(BRD_TGR76527), TgQS2 (BRD_TGR88570), TgQS3 (BRD_TGR91564), TgQS4 (BRD_TGR71331), TgQS5 (BRD_TGR25249), TgQPT1 (BRD_TGR75026), TgQPT2 
(BRD_TGR5467), TgNNAT1 (BRD_TGR19919), TgNNAT2 (BRD_TGR11055), TgNADpp1 (BRD_TGR1146), TgNADpp2 (BRD_TGR16760), Tg5′-N1 (BRD_TGR62303), 
Tg5′-N2 (BRD_TGR51963), Tg5′-N 3(BRD_TGR81916). 
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synthesis (Schippers et al., 2008). Therefore, it is speculated that TgAOX 
and TgQS are the key enzymes in the aspartate pathway in T. grandis 
nuts, and the upregulation of TgAOX and TgQS may be responsible for 
the relatively high accumulation of vitamin B3 in cultivars S14 and W03. 

3.3. The accumulation of vitamin B3 after ethylene treatment may be 
achieved by the upregulation of TgAOX and TgQS through ERF 

It has been reported that the transcriptional regulation of several 
genes, including QS and QPT, in the aspartate pathway can be induced 
by hormone signaling, such as ABA, JA, and ethylene, and several 
transcription factors have been identified (Hashimoto and Shoji, 2011; 
Hong et al., 2020; Wei et al., 2020). In this study, a total of 270 tran-
scripts of TFs were found correlated with vitamin B3 contents in the nuts 
of different T. grandis cultivars (Table S8). Among them, 251 TFs, 
including those of WRKY, MYB, ERF, VOZ, and TCP etc., were found to 
exhibit positive or negative correlations with the expression of genes 
involved in vitamin B3 biosynthesis (Table S9). Based on the network 
analysis, we found that most of the TFs showed their highest network 
degrees with the AOX and QS genes, which suggests that these TFs 
mainly participate in the regulation of the expression of these two en-
zymes in the vitamin B3 synthesis pathway of T. grandis nuts (Fig. 4). 

Based on the correlation analysis between the expression level of 
genes involved in vitamin B3 biosynthesis pathway and the candidate 
TFs, we selected the strongest correlated TFs with –log10 (P) ≥ 4 (Fig. 5A 

and B). Among them, the ERF gene family exhibited extremely signifi-
cant correlations with TgAOX and TgQS, which suggested that TgERFs 
may be the key transcription factors involved in vitamin B3 biosynthesis 
(Fig. 5C, Table S10). ERF is the ethylene-responsive transcription factor 
and is reportedly involved in the regulation of diverse plant develop-
mental and biosynthetic pathways (Xu et al. 2019; Binder, 2020; Feng 
et al., 2020). Studies have found that ERF189 can bind to the promoter 
region of tobacco QPT2, the other key enzymes in the vitamin B3 
biosynthesis pathway and is essential for the expression of QPT2 (Shoji 
& Hashimoto, 2011). However, whether ERF can regulate the expression 
of AOX or QS has not previously been reported. Thus, we performed the 
exogenous ethephon treatment for further verification. Real time PCR 
showed that ethylene treatment induced the expression of TgERFs 
(Fig. 6A). At the same time, TgAOX and TgQS were also upregulated after 
the ethephon treatment, and the relative contents of vitamin B3 were 
also increased in the nuts of T. grandis (Fig. 6A and B, Table S11). These 
results suggest that the ethylene treatment can promote the biosynthesis 
of vitamin B3, which is likely to be achieved through the regulation of 
the expression of TgAOX and TgQS by the ERF TFs, but this specific 
regulatory mechanism requires further investigation. 

4. Conclusions 

Vitamin B3 contents in the nuts of T. grandis were highly dependent 
on the cultivar, suggesting that vitamin B3 accumulation and 

Fig. 4. Coexpression networks associated with Vitamin B3 biosynthesis regulation in nuts of Torreya grandis. The Gene ID of transcription factors and related cor-
relation coefficients were shown in supplementary Table S9. 
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biosynthesis is regulated by several key enzymes or genes. To explore 
this, we conducted systematic transcriptome analysis of vitamin B3 
biosynthesis among different T. grandis cultivars. The findings suggest 
that de novo vitamin B3 biosynthesis occurs mainly via the aspartate 
pathway in T. grandis nuts. The candidate genes (TgAOX3 and TgQS3) 
showed significant correlations with the vitamin B3 contents among the 
different T. grandis cultivars. Moreover, network analysis suggested that 
the ERF gene family may be the regulatory factors in the B3 biosynthesis 
pathway. The ethylene treatment consistently promoted the biosyn-
thesis of vitamin B3, which strongly indicates that this is likely to be 

achieved through the regulation of the expression of TgAOX and TgQS by 
ERF. Our results not only elucidate the key genes in B3 accumulation but 
may also identify a framework for the transcriptional regulation of 
vitamin B3 biosynthesis genes. At the same time, they provide a precious 
genetic resource for the study of the molecular mechanisms underlying 
cultivar-specific regulations of vitamin B3 biosynthesis in plants. 
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Fig. 5. Statistical analysis of correlations between transcription factors and vitamin B3 biosynthesis related genes. (A) Statistical analysis of correlations between TFs and 
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